|
from __future__ import annotations |
|
|
|
from torchgen.model import NativeFunctionsGroup, NativeFunctionsViewGroup |
|
|
|
|
|
def func_name_base_str(g: NativeFunctionsGroup | NativeFunctionsViewGroup) -> str: |
|
if isinstance(g, NativeFunctionsGroup): |
|
return str(g.functional.func.name.name.base) |
|
else: |
|
return str(g.view.root_name) |
|
|
|
|
|
is_hand_written_ops_ = frozenset( |
|
( |
|
"abs", |
|
"add", |
|
"addmm", |
|
"all", |
|
"any", |
|
"argmin", |
|
"bmm", |
|
"clamp", |
|
"clamp_min", |
|
"cumsum", |
|
"div", |
|
"fmod", |
|
"index_select", |
|
"leaky_relu", |
|
"linear", |
|
"log", |
|
"matmul", |
|
"mul", |
|
"narrow_copy", |
|
"nonzero", |
|
"pow", |
|
"remainder", |
|
"sigmoid", |
|
"sign", |
|
"sub", |
|
"tanh", |
|
"detach", |
|
"expand_as", |
|
"flatten", |
|
"narrow", |
|
"reshape_as", |
|
"select", |
|
"slice", |
|
"softmax", |
|
"split", |
|
"squeeze", |
|
"transpose", |
|
"view", |
|
"where", |
|
) |
|
) |
|
|
|
|
|
def is_hand_written(g: NativeFunctionsGroup | NativeFunctionsViewGroup) -> bool: |
|
name_base = func_name_base_str(g) |
|
return name_base in is_hand_written_ops_ |
|
|
|
|
|
def override_test_values(arg_map: dict[str, str], op_name: str, index: int) -> None: |
|
assert index == 0 or index == 1 |
|
if op_name == "addr": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({6, 6})" |
|
arg_map["vec1"] = "at::rand({6})" |
|
arg_map["vec2"] = "at::rand({6})" |
|
else: |
|
arg_map["self"] = "at::rand({22, 22})" |
|
arg_map["vec1"] = "at::rand({22})" |
|
arg_map["vec2"] = "at::rand({22})" |
|
return |
|
if op_name == "mv": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({6, 6})" |
|
arg_map["vec"] = "at::rand({6})" |
|
else: |
|
arg_map["self"] = "at::rand({22, 22})" |
|
arg_map["vec"] = "at::rand({22})" |
|
return |
|
if op_name == "addbmm": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({6, 6})" |
|
else: |
|
arg_map["self"] = "at::rand({22, 22})" |
|
return |
|
if op_name == "cross": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({3, 3, 3})" |
|
arg_map["other"] = "at::rand({3, 3, 3})" |
|
else: |
|
arg_map["self"] = "at::rand({22, 3, 22})" |
|
arg_map["other"] = "at::rand({22, 3, 22})" |
|
return |
|
if op_name == "take": |
|
if index == 0: |
|
arg_map["index"] = "at::randint(0, 216, {20}, torch::kInt64)" |
|
else: |
|
arg_map["index"] = "at::randint(0, 1000, {100}, torch::kInt64)" |
|
return |
|
if op_name == "take_along_dim": |
|
if index == 0: |
|
arg_map["indices"] = "at::argsort(self0, 1, true)" |
|
else: |
|
arg_map["indices"] = "at::argsort(self1, 1, true)" |
|
return |
|
if op_name == "masked_select": |
|
if index == 0: |
|
arg_map["mask"] = "at::randn({6, 6, 6}) > 0.5" |
|
else: |
|
arg_map["mask"] = "at::rand({22, 22, 22}) > 0.5" |
|
return |
|
if op_name == "orgqr": |
|
if index == 0: |
|
arg_map["input2"] = "at::rand({6, 6})" |
|
else: |
|
arg_map["input2"] = "at::rand({22, 22})" |
|
return |
|
if op_name == "ormqr": |
|
if index == 0: |
|
arg_map["input2"] = "at::rand({6, 6})" |
|
else: |
|
arg_map["input2"] = "at::rand({22, 22})" |
|
return |
|
if op_name == "quantile": |
|
if index == 0: |
|
arg_map["q"] = "at::rand({6})" |
|
arg_map["interpolation"] = '"linear"' |
|
else: |
|
arg_map["q"] = "at::rand({22})" |
|
arg_map["interpolation"] = '"linear"' |
|
return |
|
if op_name == "nanquantile": |
|
if index == 0: |
|
arg_map["q"] = "at::rand({6})" |
|
arg_map["interpolation"] = '"linear"' |
|
else: |
|
arg_map["q"] = "at::rand({22})" |
|
arg_map["interpolation"] = '"linear"' |
|
return |
|
if op_name == "multi_margin_loss": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({6, 6})" |
|
arg_map["target"] = "at::randint(6, {6}, torch::kInt64)" |
|
arg_map["weight"] = "at::rand({6})" |
|
else: |
|
arg_map["self"] = "at::rand({22, 22})" |
|
arg_map["target"] = "at::randint(22, {22}, torch::kInt64)" |
|
arg_map["weight"] = "at::rand({22})" |
|
return |
|
if op_name == "multilabel_margin_loss": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({6, 6})" |
|
arg_map["target"] = "at::randint(6, {6, 6}, torch::kInt64)" |
|
else: |
|
arg_map["self"] = "at::rand({22, 22})" |
|
arg_map["target"] = "at::randint(22, {22, 22}, torch::kInt64)" |
|
return |
|
if op_name == "nll_loss": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({6, 6})" |
|
arg_map["target"] = "at::randint(6, {6}, torch::kInt64)" |
|
arg_map["weight"] = "at::rand({6})" |
|
else: |
|
arg_map["self"] = "at::rand({22, 22})" |
|
arg_map["target"] = "at::randint(22, {22}, torch::kInt64)" |
|
arg_map["weight"] = "at::rand({22})" |
|
return |
|
if op_name == "nll_loss2d": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({6, 6, 6, 6})" |
|
arg_map["target"] = "at::randint(6, {6, 6, 6}, torch::kInt64)" |
|
arg_map["weight"] = "at::rand({6})" |
|
else: |
|
arg_map["self"] = "at::rand({22, 22, 22, 22})" |
|
arg_map["target"] = "at::randint(22, {22, 22, 22}, torch::kInt64)" |
|
arg_map["weight"] = "at::rand({22})" |
|
return |
|
if op_name in ( |
|
"fft_fft", |
|
"fft_ifft", |
|
"fft_rfft", |
|
"fft_irfft", |
|
"fft_hfft", |
|
"fft_ihfft", |
|
): |
|
arg_map["norm"] = '"forward"' |
|
return |
|
if op_name == "linalg_tensorinv": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({6, 6, 6, 6})" |
|
arg_map["ind"] = "2" |
|
else: |
|
arg_map["self"] = "at::rand({22, 22, 22, 22})" |
|
arg_map["ind"] = "2" |
|
return |
|
if op_name == "addmv": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({2})" |
|
arg_map["mat"] = "at::rand({2, 2})" |
|
arg_map["vec"] = "at::rand({2})" |
|
else: |
|
arg_map["self"] = "at::rand({35})" |
|
arg_map["mat"] = "at::rand({35, 35})" |
|
arg_map["vec"] = "at::rand({35})" |
|
return |
|
if op_name == "acosh": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({2, 2, 2}) + at::ones({2, 2, 2})" |
|
else: |
|
arg_map["self"] = "at::rand({5, 5, 5}) + at::ones({5, 5, 5})" |
|
return |
|
if op_name == "adaptive_max_pool2d_backward": |
|
if index == 0: |
|
arg_map["grad_output"] = "at::rand({2, 2, 2}, at::kFloat)" |
|
arg_map["self"] = "at::rand({2, 2, 2}, at::kFloat)" |
|
arg_map["indices"] = "at::randint(0, 1, {2, 2, 2}, at::kLong)" |
|
else: |
|
arg_map["grad_output"] = "at::rand({3, 3, 3}, at::kFloat)" |
|
arg_map["self"] = "at::rand({3, 3, 3}, at::kFloat)" |
|
arg_map["indices"] = "at::randint(0, 1, {3, 3, 3}, at::kLong)" |
|
return |
|
if op_name == "adaptive_max_pool3d_backward": |
|
if index == 0: |
|
arg_map["grad_output"] = "at::rand({2, 2, 2, 2}, at::kFloat)" |
|
arg_map["self"] = "at::rand({2, 2, 2, 2}, at::kFloat)" |
|
arg_map["indices"] = "at::randint(0, 1, {2, 2, 2, 2}, at::kLong)" |
|
else: |
|
arg_map["grad_output"] = "at::rand({3, 3, 3, 3}, at::kFloat)" |
|
arg_map["self"] = "at::rand({3, 3, 3, 3}, at::kFloat)" |
|
arg_map["indices"] = "at::randint(0, 1, {3, 3, 3, 3}, at::kLong)" |
|
return |
|
if op_name == "bitwise_left_shift": |
|
if index == 0: |
|
arg_map["self"] = "at::randint(1, 1 << 4, {6, 6, 6}, at::kInt)" |
|
arg_map["other"] = "at::randint(1, 26, {6, 6, 6}, at::kInt)" |
|
else: |
|
arg_map["self"] = "at::randint(1, 1 << 4, {22, 22, 22}, at::kInt)" |
|
arg_map["other"] = "at::randint(1, 26, {22, 22, 22}, at::kInt)" |
|
return |
|
if op_name == "bitwise_right_shift": |
|
if index == 0: |
|
arg_map["self"] = "at::randint(1 << 21, 1 << 30, {6, 6, 6}, at::kInt)" |
|
arg_map["other"] = "at::randint(1, 22, {6, 6, 6}, at::kInt)" |
|
else: |
|
arg_map["self"] = "at::randint(1 << 21, 1 << 30, {22, 22, 22}, at::kInt)" |
|
arg_map["other"] = "at::randint(1, 22, {22, 22, 22}, at::kInt)" |
|
return |
|
if op_name == "gather": |
|
if index == 0: |
|
arg_map["self"] = "at::randint(1, 100, {2,2,2}, at::kInt)" |
|
arg_map["dim"] = "1" |
|
arg_map["index"] = "at::randint(0, 1, {2,2,2}, torch::kInt64)" |
|
arg_map["sparse_grad"] = "false" |
|
else: |
|
arg_map["self"] = "at::randint(1, 100, {5,5,5}, at::kInt)" |
|
arg_map["dim"] = "1" |
|
arg_map["index"] = "at::randint(0, 4, {5,5,5}, torch::kInt64)" |
|
arg_map["sparse_grad"] = "false" |
|
return |
|
if op_name == "gelu": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({6, 6, 6})" |
|
arg_map["approximate"] = '"tanh"' |
|
else: |
|
arg_map["self"] = "at::rand({22, 22, 22})" |
|
arg_map["approximate"] = '"tanh"' |
|
return |
|
if op_name == "gelu_backward": |
|
if index == 0: |
|
arg_map["grad_output"] = "at::rand({6, 6, 6})" |
|
arg_map["self"] = "at::rand({6, 6, 6})" |
|
arg_map["approximate"] = '"tanh"' |
|
else: |
|
arg_map["grad_output"] = "at::rand({22, 22, 22})" |
|
arg_map["self"] = "at::rand({22, 22, 22})" |
|
arg_map["approximate"] = '"tanh"' |
|
return |
|
if op_name == "index_add": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({2})" |
|
arg_map["dim"] = "0" |
|
arg_map["index"] = "at::randint(0, 1, {2}, at::kInt)" |
|
arg_map["source"] = "at::rand({2})" |
|
arg_map["alpha"] = "2" |
|
else: |
|
arg_map["self"] = "at::rand({16})" |
|
arg_map["dim"] = "0" |
|
arg_map["index"] = "at::randint(0, 10, {16}, at::kInt)" |
|
arg_map["source"] = "at::rand({16})" |
|
arg_map["alpha"] = "2" |
|
return |
|
if op_name == "index_copy": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({2})" |
|
arg_map["dim"] = "0" |
|
arg_map["index"] = "at::randint(0, 1, {2}, at::kLong)" |
|
arg_map["source"] = "at::rand({2})" |
|
else: |
|
arg_map["self"] = "at::rand({32})" |
|
arg_map["dim"] = "0" |
|
arg_map["index"] = "at::randint(0, 10, {32}, at::kLong)" |
|
arg_map["source"] = "at::rand({32})" |
|
return |
|
if op_name == "linalg_cross": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({6, 3, 6})" |
|
arg_map["other"] = "at::rand({6, 3, 6})" |
|
arg_map["dim"] = "1" |
|
else: |
|
arg_map["self"] = "at::rand({22, 3, 22})" |
|
arg_map["other"] = "at::rand({22, 3, 22})" |
|
arg_map["dim"] = "1" |
|
return |
|
if op_name == "nll_loss_backward": |
|
if index == 0: |
|
arg_map["grad_output"] = "at::rand({})" |
|
arg_map["self"] = "at::rand({6})" |
|
arg_map["target"] = "at::randint(0, 5, {6}, torch::kInt64)" |
|
arg_map["weight"] = "at::rand({6})" |
|
arg_map["reduction"] = "1" |
|
arg_map["ignore_index"] = "1" |
|
arg_map["total_weight"] = "at::rand({})" |
|
else: |
|
arg_map["grad_output"] = "at::rand({})" |
|
arg_map["self"] = "at::rand({36})" |
|
arg_map["target"] = "at::randint(0, 11, {36}, torch::kInt64)" |
|
arg_map["weight"] = "at::rand({36})" |
|
arg_map["reduction"] = "1" |
|
arg_map["ignore_index"] = "1" |
|
arg_map["total_weight"] = "at::rand({})" |
|
return |
|
if op_name in ["scatter", "scatter_add", "_scatter_reduce"]: |
|
if index == 0: |
|
arg_map["self"] = "at::randint(1, 100, {2,2,2}, torch::kInt64)" |
|
arg_map["index"] = "at::randint(0, 1, {2,2,2}, torch::kInt64)" |
|
arg_map["src"] = "at::randint(1, 100, {2,2,2}, torch::kInt64)" |
|
else: |
|
arg_map["self"] = "at::randint(1, 100, {5,5,5}, torch::kInt64)" |
|
arg_map["index"] = "at::randint(0, 1, {5,5,5}, torch::kInt64)" |
|
arg_map["src"] = "at::randint(1, 100, {5,5,5}, torch::kInt64)" |
|
if "reduce" in arg_map: |
|
arg_map["reduce"] = '"sum"' if op_name == "_scatter_reduce" else '"add"' |
|
return |
|
if op_name == "scatter_reduce": |
|
arg_map["reduce"] = '"mean"' |
|
if index == 0: |
|
arg_map["index"] = "at::randint(6, {6, 6, 6}, torch::kInt64)" |
|
else: |
|
arg_map["index"] = "at::randint(22, {22, 22, 22}, torch::kInt64)" |
|
return |
|
if op_name == "special_zeta": |
|
if index == 0: |
|
arg_map["self"] = "at::rand({2,2,2}, at::kDouble) + at::ones({2,2,2})" |
|
arg_map["other"] = "at::rand({2,2,2}, at::kDouble) + at::ones({2,2,2})" |
|
else: |
|
arg_map["self"] = "at::rand({5,5,5}, at::kDouble) + at::ones({5,5,5})" |
|
arg_map["other"] = "at::rand({5,5,5}, at::kDouble) + at::ones({5,5,5})" |
|
return |
|
if op_name == "_convert_indices_from_csr_to_coo": |
|
if index == 0: |
|
arg_map["crow_indices"] = "torch::tensor({1}, torch::kInt32)" |
|
arg_map["col_indices"] = "torch::tensor({0, 1, 0}, torch::kInt32)" |
|
arg_map["out_int32"] = "false" |
|
else: |
|
arg_map["crow_indices"] = "torch::tensor({0}, torch::kInt32)" |
|
arg_map["col_indices"] = ( |
|
"torch::tensor({0, 1, 0, 2, 1, 2, 0, 1, 0, 2, 1, 2}, torch::kInt32)" |
|
) |
|
arg_map["out_int32"] = "false" |
|
return |
|
if op_name == "_convert_indices_from_coo_to_csr": |
|
if index == 0: |
|
arg_map["self"] = "at::randint(0, 3, {2}, at::kInt)" |
|
arg_map["size"] = "10" |
|
arg_map["out_int32"] = "false" |
|
else: |
|
arg_map["self"] = "at::randint(0, 3, {12}, at::kInt)" |
|
arg_map["size"] = "24" |
|
arg_map["out_int32"] = "false" |
|
return |
|
if op_name in ("diagonal", "linalg_diagonal"): |
|
arg_map["offset"] = "0" |
|
arg_map["dim1"] = "2" |
|
arg_map["dim2"] = "1" |
|
return |
|
|