|
|
|
r"""Implementation for the Resilient backpropagation.""" |
|
from typing import cast, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from .optimizer import ( |
|
_capturable_doc, |
|
_default_to_fused_or_foreach, |
|
_differentiable_doc, |
|
_disable_dynamo_if_unsupported, |
|
_foreach_doc, |
|
_get_capturable_supported_devices, |
|
_get_scalar_dtype, |
|
_maximize_doc, |
|
_params_doc, |
|
_use_grad_for_differentiable, |
|
_view_as_real, |
|
Optimizer, |
|
ParamsT, |
|
) |
|
|
|
|
|
__all__ = ["Rprop", "rprop"] |
|
|
|
|
|
class Rprop(Optimizer): |
|
def __init__( |
|
self, |
|
params: ParamsT, |
|
lr: Union[float, Tensor] = 1e-2, |
|
etas: tuple[float, float] = (0.5, 1.2), |
|
step_sizes: tuple[float, float] = (1e-6, 50), |
|
*, |
|
capturable: bool = False, |
|
foreach: Optional[bool] = None, |
|
maximize: bool = False, |
|
differentiable: bool = False, |
|
): |
|
if isinstance(lr, Tensor) and lr.numel() != 1: |
|
raise ValueError("Tensor lr must be 1-element") |
|
if not 0.0 <= lr: |
|
raise ValueError(f"Invalid learning rate: {lr}") |
|
if not 0.0 < etas[0] < 1.0 < etas[1]: |
|
raise ValueError(f"Invalid eta values: {etas[0]}, {etas[1]}") |
|
|
|
defaults = dict( |
|
lr=lr, |
|
etas=etas, |
|
step_sizes=step_sizes, |
|
foreach=foreach, |
|
maximize=maximize, |
|
differentiable=differentiable, |
|
capturable=capturable, |
|
) |
|
super().__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault("foreach", None) |
|
group.setdefault("maximize", False) |
|
group.setdefault("differentiable", False) |
|
group.setdefault("capturable", False) |
|
for p in group["params"]: |
|
p_state = self.state.get(p, []) |
|
if len(p_state) != 0 and not torch.is_tensor(p_state["step"]): |
|
step_val = float(p_state["step"]) |
|
p_state["step"] = ( |
|
torch.tensor( |
|
step_val, dtype=_get_scalar_dtype(), device=p.device |
|
) |
|
if group["capturable"] |
|
else torch.tensor(step_val, dtype=_get_scalar_dtype()) |
|
) |
|
|
|
def _init_group(self, group, params, grads, prevs, step_sizes, state_steps): |
|
has_complex = False |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
has_complex |= torch.is_complex(p) |
|
params.append(p) |
|
grad = p.grad |
|
if grad.is_sparse: |
|
raise RuntimeError("Rprop does not support sparse gradients") |
|
|
|
grads.append(grad) |
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state["step"] = ( |
|
torch.zeros((), dtype=_get_scalar_dtype(), device=p.device) |
|
if group["capturable"] |
|
else torch.zeros((), dtype=_get_scalar_dtype()) |
|
) |
|
|
|
state["prev"] = torch.zeros_like(p, memory_format=torch.preserve_format) |
|
if p.dtype.is_complex: |
|
|
|
|
|
state["step_size"] = torch.full_like( |
|
grad, complex(group["lr"], group["lr"]) |
|
) |
|
else: |
|
state["step_size"] = torch.full_like(grad, group["lr"]) |
|
|
|
prevs.append(state["prev"]) |
|
step_sizes.append(state["step_size"]) |
|
state_steps.append(state["step"]) |
|
|
|
return has_complex |
|
|
|
@_use_grad_for_differentiable |
|
def step(self, closure=None): |
|
"""Perform a single optimization step. |
|
|
|
Args: |
|
closure (Callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
self._cuda_graph_capture_health_check() |
|
|
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params: list[Tensor] = [] |
|
grads: list[Tensor] = [] |
|
prevs: list[Tensor] = [] |
|
step_sizes: list[Tensor] = [] |
|
state_steps: list[Tensor] = [] |
|
|
|
etaminus, etaplus = group["etas"] |
|
step_size_min, step_size_max = group["step_sizes"] |
|
foreach = group["foreach"] |
|
maximize = group["maximize"] |
|
|
|
has_complex = self._init_group( |
|
group, params, grads, prevs, step_sizes, state_steps |
|
) |
|
|
|
rprop( |
|
params, |
|
grads, |
|
prevs, |
|
step_sizes, |
|
state_steps, |
|
step_size_min=step_size_min, |
|
step_size_max=step_size_max, |
|
etaminus=etaminus, |
|
etaplus=etaplus, |
|
foreach=foreach, |
|
maximize=maximize, |
|
differentiable=group["differentiable"], |
|
capturable=group["capturable"], |
|
has_complex=has_complex, |
|
) |
|
|
|
return loss |
|
|
|
|
|
Rprop.__doc__ = ( |
|
r"""Implements the resilient backpropagation algorithm. |
|
|
|
.. math:: |
|
\begin{aligned} |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{input} : \theta_0 \in \mathbf{R}^d \text{ (params)},f(\theta) |
|
\text{ (objective)}, \\ |
|
&\hspace{13mm} \eta_{+/-} \text{ (etaplus, etaminus)}, \Gamma_{max/min} |
|
\text{ (step sizes)} \\ |
|
&\textbf{initialize} : g^0_{prev} \leftarrow 0, |
|
\: \eta_0 \leftarrow \text{lr (learning rate)} \\ |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
|
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
|
&\hspace{5mm} \textbf{for} \text{ } i = 0, 1, \ldots, d-1 \: \mathbf{do} \\ |
|
&\hspace{10mm} \textbf{if} \: g^i_{prev} g^i_t > 0 \\ |
|
&\hspace{15mm} \eta^i_t \leftarrow \mathrm{min}(\eta^i_{t-1} \eta_{+}, |
|
\Gamma_{max}) \\ |
|
&\hspace{10mm} \textbf{else if} \: g^i_{prev} g^i_t < 0 \\ |
|
&\hspace{15mm} \eta^i_t \leftarrow \mathrm{max}(\eta^i_{t-1} \eta_{-}, |
|
\Gamma_{min}) \\ |
|
&\hspace{15mm} g^i_t \leftarrow 0 \\ |
|
&\hspace{10mm} \textbf{else} \: \\ |
|
&\hspace{15mm} \eta^i_t \leftarrow \eta^i_{t-1} \\ |
|
&\hspace{5mm}\theta_t \leftarrow \theta_{t-1}- \eta_t \mathrm{sign}(g_t) \\ |
|
&\hspace{5mm}g_{prev} \leftarrow g_t \\ |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
&\bf{return} \: \theta_t \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
\end{aligned} |
|
|
|
For further details regarding the algorithm we refer to the paper |
|
`A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm |
|
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1417>`_. |
|
""" |
|
+ rf""" |
|
Args: |
|
{_params_doc} |
|
lr (float, optional): learning rate (default: 1e-2) |
|
etas (Tuple[float, float], optional): pair of (etaminus, etaplus), that |
|
are multiplicative increase and decrease factors |
|
(default: (0.5, 1.2)) |
|
step_sizes (Tuple[float, float], optional): a pair of minimal and |
|
maximal allowed step sizes (default: (1e-6, 50)) |
|
{_capturable_doc} |
|
{_foreach_doc} |
|
{_maximize_doc} |
|
{_differentiable_doc} |
|
|
|
""" |
|
) |
|
|
|
|
|
def _single_tensor_rprop( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
prevs: list[Tensor], |
|
step_sizes: list[Tensor], |
|
state_steps: list[Tensor], |
|
*, |
|
step_size_min: float, |
|
step_size_max: float, |
|
etaminus: float, |
|
etaplus: float, |
|
maximize: bool, |
|
capturable: bool, |
|
differentiable: bool, |
|
has_complex: bool, |
|
): |
|
for i, param in enumerate(params): |
|
grad = grads[i] |
|
grad = grad if not maximize else -grad |
|
prev = prevs[i] |
|
step_size = step_sizes[i] |
|
step = state_steps[i] |
|
|
|
|
|
if not torch.compiler.is_compiling() and capturable: |
|
capturable_supported_devices = _get_capturable_supported_devices() |
|
assert ( |
|
param.device.type == step.device.type |
|
and param.device.type in capturable_supported_devices |
|
), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." |
|
|
|
step += 1 |
|
|
|
if torch.is_complex(param): |
|
grad = torch.view_as_real(grad) |
|
prev = torch.view_as_real(prev) |
|
param = torch.view_as_real(param) |
|
step_size = torch.view_as_real(step_size) |
|
if differentiable: |
|
sign = grad.mul(prev.clone()).sign() |
|
else: |
|
sign = grad.mul(prev).sign() |
|
|
|
if capturable: |
|
sign.copy_(torch.where(sign.gt(0), etaplus, sign)) |
|
sign.copy_(torch.where(sign.lt(0), etaminus, sign)) |
|
sign.copy_(torch.where(sign.eq(0), 1, sign)) |
|
else: |
|
sign[sign.gt(0)] = etaplus |
|
sign[sign.lt(0)] = etaminus |
|
sign[sign.eq(0)] = 1 |
|
|
|
|
|
step_size.mul_(sign).clamp_(step_size_min, step_size_max) |
|
|
|
|
|
|
|
grad = grad.clone(memory_format=torch.preserve_format) |
|
if capturable: |
|
grad.copy_(torch.where(sign.eq(etaminus), 0, grad)) |
|
else: |
|
grad[sign.eq(etaminus)] = 0 |
|
|
|
|
|
param.addcmul_(grad.sign(), step_size, value=-1) |
|
prev.copy_(grad) |
|
|
|
|
|
def _multi_tensor_rprop( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
prevs: list[Tensor], |
|
step_sizes: list[Tensor], |
|
state_steps: list[Tensor], |
|
*, |
|
step_size_min: float, |
|
step_size_max: float, |
|
etaminus: float, |
|
etaplus: float, |
|
maximize: bool, |
|
capturable: bool, |
|
differentiable: bool, |
|
has_complex: bool, |
|
): |
|
if len(params) == 0: |
|
return |
|
|
|
assert not differentiable, "_foreach ops don't support autograd" |
|
|
|
|
|
if not torch.compiler.is_compiling() and capturable: |
|
capturable_supported_devices = _get_capturable_supported_devices() |
|
assert all( |
|
p.device.type == step.device.type |
|
and p.device.type in capturable_supported_devices |
|
for p, step in zip(params, state_steps) |
|
), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." |
|
|
|
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( |
|
[params, grads, prevs, step_sizes, state_steps] |
|
) |
|
for ( |
|
grouped_params_, |
|
grouped_grads_, |
|
grouped_prevs_, |
|
grouped_step_sizes_, |
|
grouped_state_steps_, |
|
), _ in grouped_tensors.values(): |
|
grouped_params = cast(list[Tensor], grouped_params_) |
|
grouped_grads = cast(list[Tensor], grouped_grads_) |
|
grouped_prevs = cast(list[Tensor], grouped_prevs_) |
|
grouped_step_sizes = cast(list[Tensor], grouped_step_sizes_) |
|
grouped_state_steps = cast(list[Tensor], grouped_state_steps_) |
|
|
|
|
|
|
|
|
|
|
|
if not torch.compiler.is_compiling() and grouped_state_steps[0].is_cpu: |
|
torch._foreach_add_( |
|
grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 |
|
) |
|
else: |
|
torch._foreach_add_(grouped_state_steps, 1) |
|
|
|
|
|
if has_complex: |
|
_view_as_real( |
|
grouped_params, grouped_grads, grouped_prevs, grouped_step_sizes |
|
) |
|
|
|
signs = torch._foreach_mul(grouped_grads, grouped_prevs) |
|
if maximize: |
|
torch._foreach_neg_(signs) |
|
|
|
|
|
|
|
|
|
torch._foreach_copy_(grouped_prevs, grouped_grads) |
|
if maximize: |
|
torch._foreach_neg_(grouped_prevs) |
|
grouped_grads = grouped_prevs |
|
|
|
torch._foreach_sign_(signs) |
|
if capturable: |
|
for sign in signs: |
|
sign.copy_(torch.where(sign.gt(0), etaplus, sign)) |
|
sign.copy_(torch.where(sign.lt(0), etaminus, sign)) |
|
sign.copy_(torch.where(sign.eq(0), 1, sign)) |
|
else: |
|
for sign in signs: |
|
sign[sign.gt(0)] = etaplus |
|
sign[sign.lt(0)] = etaminus |
|
sign[sign.eq(0)] = 1 |
|
|
|
|
|
torch._foreach_mul_(grouped_step_sizes, signs) |
|
for step_size in grouped_step_sizes: |
|
step_size.clamp_(step_size_min, step_size_max) |
|
|
|
|
|
|
|
grouped_grads = list(grouped_grads) |
|
for i in range(len(grouped_grads)): |
|
grouped_grads[i].copy_( |
|
torch.where(signs[i].eq(etaminus), 0, grouped_grads[i]) |
|
) |
|
|
|
|
|
del signs |
|
|
|
|
|
grad_signs = [grad.sign() for grad in grouped_grads] |
|
torch._foreach_addcmul_( |
|
grouped_params, grad_signs, grouped_step_sizes, value=-1 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_rprop) |
|
def rprop( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
prevs: list[Tensor], |
|
step_sizes: list[Tensor], |
|
state_steps: list[Tensor], |
|
|
|
|
|
foreach: Optional[bool] = None, |
|
capturable: bool = False, |
|
maximize: bool = False, |
|
differentiable: bool = False, |
|
has_complex: bool = False, |
|
*, |
|
step_size_min: float, |
|
step_size_max: float, |
|
etaminus: float, |
|
etaplus: float, |
|
): |
|
r"""Functional API that performs rprop algorithm computation. |
|
|
|
See :class:`~torch.optim.Rprop` for details. |
|
""" |
|
|
|
|
|
if not torch.compiler.is_compiling() and not all( |
|
isinstance(t, torch.Tensor) for t in state_steps |
|
): |
|
raise RuntimeError( |
|
"API has changed, `state_steps` argument must contain a list of singleton tensors" |
|
) |
|
|
|
if foreach is None: |
|
_, foreach = _default_to_fused_or_foreach( |
|
params, differentiable, use_fused=False |
|
) |
|
|
|
if foreach and torch.jit.is_scripting(): |
|
raise RuntimeError("torch.jit.script not supported with foreach optimizers") |
|
|
|
if foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_rprop |
|
else: |
|
func = _single_tensor_rprop |
|
|
|
func( |
|
params, |
|
grads, |
|
prevs, |
|
step_sizes, |
|
state_steps, |
|
step_size_min=step_size_min, |
|
step_size_max=step_size_max, |
|
etaminus=etaminus, |
|
etaplus=etaplus, |
|
capturable=capturable, |
|
maximize=maximize, |
|
differentiable=differentiable, |
|
has_complex=has_complex, |
|
) |
|
|