|
|
|
r"""Implementation for the RMSprop algorithm.""" |
|
from typing import cast, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from .optimizer import ( |
|
_capturable_doc, |
|
_default_to_fused_or_foreach, |
|
_differentiable_doc, |
|
_disable_dynamo_if_unsupported, |
|
_foreach_doc, |
|
_get_capturable_supported_devices, |
|
_get_scalar_dtype, |
|
_maximize_doc, |
|
_params_doc, |
|
_use_grad_for_differentiable, |
|
_view_as_real, |
|
Optimizer, |
|
ParamsT, |
|
) |
|
|
|
|
|
__all__ = ["RMSprop", "rmsprop"] |
|
|
|
|
|
class RMSprop(Optimizer): |
|
def __init__( |
|
self, |
|
params: ParamsT, |
|
lr: Union[float, Tensor] = 1e-2, |
|
alpha: float = 0.99, |
|
eps: float = 1e-8, |
|
weight_decay: float = 0, |
|
momentum: float = 0, |
|
centered: bool = False, |
|
capturable: bool = False, |
|
foreach: Optional[bool] = None, |
|
maximize: bool = False, |
|
differentiable: bool = False, |
|
): |
|
if isinstance(lr, Tensor) and lr.numel() != 1: |
|
raise ValueError("Tensor lr must be 1-element") |
|
if not 0.0 <= lr: |
|
raise ValueError(f"Invalid learning rate: {lr}") |
|
if not 0.0 <= eps: |
|
raise ValueError(f"Invalid epsilon value: {eps}") |
|
if not 0.0 <= momentum: |
|
raise ValueError(f"Invalid momentum value: {momentum}") |
|
if not 0.0 <= weight_decay: |
|
raise ValueError(f"Invalid weight_decay value: {weight_decay}") |
|
if not 0.0 <= alpha: |
|
raise ValueError(f"Invalid alpha value: {alpha}") |
|
|
|
defaults = dict( |
|
lr=lr, |
|
momentum=momentum, |
|
alpha=alpha, |
|
eps=eps, |
|
centered=centered, |
|
weight_decay=weight_decay, |
|
capturable=capturable, |
|
foreach=foreach, |
|
maximize=maximize, |
|
differentiable=differentiable, |
|
) |
|
super().__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault("momentum", 0) |
|
group.setdefault("centered", False) |
|
group.setdefault("foreach", None) |
|
group.setdefault("maximize", False) |
|
group.setdefault("differentiable", False) |
|
group.setdefault("capturable", False) |
|
for p in group["params"]: |
|
p_state = self.state.get(p, []) |
|
if len(p_state) != 0 and not torch.is_tensor(p_state["step"]): |
|
step_val = float(p_state["step"]) |
|
p_state["step"] = ( |
|
torch.tensor( |
|
step_val, dtype=_get_scalar_dtype(), device=p.device |
|
) |
|
if group["capturable"] |
|
else torch.tensor(step_val, dtype=_get_scalar_dtype()) |
|
) |
|
|
|
def _init_group( |
|
self, |
|
group, |
|
params_with_grad, |
|
grads, |
|
square_avgs, |
|
momentum_buffer_list, |
|
grad_avgs, |
|
state_steps, |
|
): |
|
has_complex = False |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
has_complex |= torch.is_complex(p) |
|
params_with_grad.append(p) |
|
|
|
if p.grad.is_sparse: |
|
raise RuntimeError("RMSprop does not support sparse gradients") |
|
grads.append(p.grad) |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state["step"] = ( |
|
torch.zeros((), dtype=_get_scalar_dtype(), device=p.device) |
|
if group["capturable"] |
|
else torch.zeros((), dtype=_get_scalar_dtype()) |
|
) |
|
state["square_avg"] = torch.zeros_like( |
|
p, memory_format=torch.preserve_format |
|
) |
|
if group["momentum"] > 0: |
|
state["momentum_buffer"] = torch.zeros_like( |
|
p, memory_format=torch.preserve_format |
|
) |
|
if group["centered"]: |
|
state["grad_avg"] = torch.zeros_like( |
|
p, memory_format=torch.preserve_format |
|
) |
|
square_avgs.append(state["square_avg"]) |
|
state_steps.append(state["step"]) |
|
|
|
if group["momentum"] > 0: |
|
momentum_buffer_list.append(state["momentum_buffer"]) |
|
if group["centered"]: |
|
grad_avgs.append(state["grad_avg"]) |
|
|
|
return has_complex |
|
|
|
@_use_grad_for_differentiable |
|
def step(self, closure=None): |
|
"""Perform a single optimization step. |
|
|
|
Args: |
|
closure (Callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
self._cuda_graph_capture_health_check() |
|
|
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad: list[Tensor] = [] |
|
grads: list[Tensor] = [] |
|
square_avgs: list[Tensor] = [] |
|
grad_avgs: list[Tensor] = [] |
|
momentum_buffer_list: list[Tensor] = [] |
|
state_steps: list[Tensor] = [] |
|
|
|
has_complex = self._init_group( |
|
group, |
|
params_with_grad, |
|
grads, |
|
square_avgs, |
|
momentum_buffer_list, |
|
grad_avgs, |
|
state_steps, |
|
) |
|
|
|
rmsprop( |
|
params_with_grad, |
|
grads, |
|
square_avgs, |
|
grad_avgs, |
|
momentum_buffer_list, |
|
state_steps, |
|
lr=group["lr"], |
|
alpha=group["alpha"], |
|
eps=group["eps"], |
|
weight_decay=group["weight_decay"], |
|
momentum=group["momentum"], |
|
centered=group["centered"], |
|
foreach=group["foreach"], |
|
maximize=group["maximize"], |
|
differentiable=group["differentiable"], |
|
capturable=group["capturable"], |
|
has_complex=has_complex, |
|
) |
|
|
|
return loss |
|
|
|
|
|
RMSprop.__doc__ = ( |
|
r"""Implements RMSprop algorithm. |
|
|
|
.. math:: |
|
\begin{aligned} |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{input} : \alpha \text{ (alpha)}, \: \gamma \text{ (lr)}, |
|
\: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\ |
|
&\hspace{13mm} \lambda \text{ (weight decay)},\: \mu \text{ (momentum)}, |
|
\: centered, \: \epsilon \text{ (epsilon)} \\ |
|
&\textbf{initialize} : v_0 \leftarrow 0 \text{ (square average)}, \: |
|
\textbf{b}_0 \leftarrow 0 \text{ (buffer)}, \: g^{ave}_0 \leftarrow 0 \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
|
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
|
&\hspace{5mm}if \: \lambda \neq 0 \\ |
|
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ |
|
&\hspace{5mm}v_t \leftarrow \alpha v_{t-1} + (1 - \alpha) g^2_t |
|
\hspace{8mm} \\ |
|
&\hspace{5mm} \tilde{v_t} \leftarrow v_t \\ |
|
&\hspace{5mm}if \: centered \\ |
|
&\hspace{10mm} g^{ave}_t \leftarrow g^{ave}_{t-1} \alpha + (1-\alpha) g_t \\ |
|
&\hspace{10mm} \tilde{v_t} \leftarrow \tilde{v_t} - \big(g^{ave}_{t} \big)^2 \\ |
|
&\hspace{5mm}if \: \mu > 0 \\ |
|
&\hspace{10mm} \textbf{b}_t\leftarrow \mu \textbf{b}_{t-1} + |
|
g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \\ |
|
&\hspace{10mm} \theta_t \leftarrow \theta_{t-1} - \gamma \textbf{b}_t \\ |
|
&\hspace{5mm} else \\ |
|
&\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - |
|
\gamma g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \hspace{3mm} \\ |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
&\bf{return} \: \theta_t \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
\end{aligned} |
|
|
|
For further details regarding the algorithm we refer to |
|
`lecture notes <https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_ by G. Hinton. |
|
and centered version `Generating Sequences |
|
With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_. |
|
The implementation here takes the square root of the gradient average before |
|
adding epsilon (note that TensorFlow interchanges these two operations). The effective |
|
learning rate is thus :math:`\gamma/(\sqrt{v} + \epsilon)` where :math:`\gamma` |
|
is the scheduled learning rate and :math:`v` is the weighted moving average |
|
of the squared gradient. |
|
""" |
|
+ rf""" |
|
Args: |
|
{_params_doc} |
|
lr (float, Tensor, optional): learning rate (default: 1e-2) |
|
alpha (float, optional): smoothing constant (default: 0.99) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
momentum (float, optional): momentum factor (default: 0) |
|
centered (bool, optional) : if ``True``, compute the centered RMSProp, |
|
the gradient is normalized by an estimation of its variance |
|
{_capturable_doc} |
|
{_foreach_doc} |
|
{_maximize_doc} |
|
{_differentiable_doc} |
|
|
|
""" |
|
) |
|
|
|
|
|
def _single_tensor_rmsprop( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
square_avgs: list[Tensor], |
|
grad_avgs: list[Tensor], |
|
momentum_buffer_list: list[Tensor], |
|
state_steps: list[Tensor], |
|
*, |
|
lr: float, |
|
alpha: float, |
|
eps: float, |
|
weight_decay: float, |
|
momentum: float, |
|
centered: bool, |
|
maximize: bool, |
|
differentiable: bool, |
|
capturable: bool, |
|
has_complex: bool, |
|
): |
|
for i, param in enumerate(params): |
|
step = state_steps[i] |
|
|
|
|
|
if not torch.compiler.is_compiling() and capturable: |
|
capturable_supported_devices = _get_capturable_supported_devices() |
|
assert ( |
|
param.device.type == step.device.type |
|
and param.device.type in capturable_supported_devices |
|
), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." |
|
|
|
grad = grads[i] |
|
grad = grad if not maximize else -grad |
|
square_avg = square_avgs[i] |
|
|
|
step += 1 |
|
|
|
if weight_decay != 0: |
|
grad = grad.add(param, alpha=weight_decay) |
|
|
|
is_complex_param = torch.is_complex(param) |
|
if is_complex_param: |
|
param = torch.view_as_real(param) |
|
grad = torch.view_as_real(grad) |
|
square_avg = torch.view_as_real(square_avg) |
|
|
|
square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha) |
|
|
|
if centered: |
|
grad_avg = grad_avgs[i] |
|
if is_complex_param: |
|
grad_avg = torch.view_as_real(grad_avg) |
|
grad_avg.lerp_(grad, 1 - alpha) |
|
avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).sqrt_() |
|
else: |
|
avg = square_avg.sqrt() |
|
|
|
if differentiable: |
|
avg = avg.add(eps) |
|
else: |
|
avg = avg.add_(eps) |
|
|
|
if momentum > 0: |
|
buf = momentum_buffer_list[i] |
|
if is_complex_param: |
|
buf = torch.view_as_real(buf) |
|
buf.mul_(momentum).addcdiv_(grad, avg) |
|
param.add_(buf, alpha=-lr) |
|
else: |
|
param.addcdiv_(grad, avg, value=-lr) |
|
|
|
|
|
def _multi_tensor_rmsprop( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
square_avgs: list[Tensor], |
|
grad_avgs: list[Tensor], |
|
momentum_buffer_list: list[Tensor], |
|
state_steps: list[Tensor], |
|
*, |
|
lr: float, |
|
alpha: float, |
|
eps: float, |
|
weight_decay: float, |
|
momentum: float, |
|
centered: bool, |
|
maximize: bool, |
|
differentiable: bool, |
|
capturable: bool, |
|
has_complex: bool, |
|
): |
|
if len(params) == 0: |
|
return |
|
|
|
assert not differentiable, "_foreach ops don't support autograd" |
|
|
|
|
|
if not torch.compiler.is_compiling() and capturable: |
|
capturable_supported_devices = _get_capturable_supported_devices() |
|
assert all( |
|
p.device.type == step.device.type |
|
and p.device.type in capturable_supported_devices |
|
for p, step in zip(params, state_steps) |
|
), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." |
|
|
|
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( |
|
[params, grads, square_avgs, grad_avgs, momentum_buffer_list, state_steps] |
|
) |
|
for ( |
|
( |
|
grouped_params_, |
|
grouped_grads_, |
|
grouped_square_avgs_, |
|
grouped_grad_avgs_, |
|
grouped_momentum_buffer_list_, |
|
grouped_state_steps_, |
|
) |
|
), _ in grouped_tensors.values(): |
|
grouped_params = cast(list[Tensor], grouped_params_) |
|
grouped_grads = cast(list[Tensor], grouped_grads_) |
|
grouped_square_avgs = cast(list[Tensor], grouped_square_avgs_) |
|
grouped_state_steps = cast(list[Tensor], grouped_state_steps_) |
|
|
|
if has_complex: |
|
state_and_grads = [grouped_grads, grouped_square_avgs] |
|
if momentum > 0: |
|
grouped_momentum_buffer_list = cast( |
|
list[Tensor], grouped_momentum_buffer_list_ |
|
) |
|
state_and_grads.append(grouped_momentum_buffer_list) |
|
if centered: |
|
grouped_grad_avgs = cast(list[Tensor], grouped_grad_avgs_) |
|
state_and_grads.append(grouped_grad_avgs) |
|
_view_as_real(grouped_params, *state_and_grads) |
|
|
|
if maximize: |
|
grouped_grads = torch._foreach_neg(grouped_grads) |
|
|
|
|
|
|
|
|
|
|
|
if not torch.compiler.is_compiling() and grouped_state_steps[0].is_cpu: |
|
torch._foreach_add_( |
|
grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 |
|
) |
|
else: |
|
torch._foreach_add_(grouped_state_steps, 1) |
|
|
|
if weight_decay != 0: |
|
|
|
if maximize: |
|
torch._foreach_add_(grouped_grads, grouped_params, alpha=weight_decay) |
|
else: |
|
grouped_grads = torch._foreach_add( |
|
grouped_grads, grouped_params, alpha=weight_decay |
|
) |
|
|
|
torch._foreach_mul_(grouped_square_avgs, alpha) |
|
torch._foreach_addcmul_( |
|
grouped_square_avgs, grouped_grads, grouped_grads, value=1 - alpha |
|
) |
|
|
|
if centered: |
|
grouped_grad_avgs = cast(list[Tensor], grouped_grad_avgs_) |
|
torch._foreach_lerp_(grouped_grad_avgs, grouped_grads, 1 - alpha) |
|
avg = torch._foreach_addcmul( |
|
grouped_square_avgs, grouped_grad_avgs, grouped_grad_avgs, value=-1 |
|
) |
|
torch._foreach_sqrt_(avg) |
|
torch._foreach_add_(avg, eps) |
|
else: |
|
avg = torch._foreach_sqrt(grouped_square_avgs) |
|
torch._foreach_add_(avg, eps) |
|
|
|
if momentum > 0: |
|
grouped_momentum_buffer_list = cast( |
|
list[Tensor], grouped_momentum_buffer_list_ |
|
) |
|
torch._foreach_mul_(grouped_momentum_buffer_list, momentum) |
|
torch._foreach_addcdiv_(grouped_momentum_buffer_list, grouped_grads, avg) |
|
|
|
|
|
if capturable and isinstance(lr, torch.Tensor): |
|
momentum_lr = torch._foreach_mul(grouped_momentum_buffer_list, -lr) |
|
torch._foreach_add_(grouped_params, momentum_lr) |
|
else: |
|
torch._foreach_add_( |
|
grouped_params, grouped_momentum_buffer_list, alpha=-lr |
|
) |
|
else: |
|
|
|
|
|
if capturable and isinstance(lr, torch.Tensor): |
|
torch._foreach_div_(avg, -lr) |
|
torch._foreach_addcdiv_(grouped_params, grouped_grads, avg) |
|
else: |
|
torch._foreach_addcdiv_(grouped_params, grouped_grads, avg, value=-lr) |
|
|
|
|
|
@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_rmsprop) |
|
def rmsprop( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
square_avgs: list[Tensor], |
|
grad_avgs: list[Tensor], |
|
momentum_buffer_list: list[Tensor], |
|
state_steps: list[Tensor], |
|
|
|
|
|
foreach: Optional[bool] = None, |
|
maximize: bool = False, |
|
differentiable: bool = False, |
|
capturable: bool = False, |
|
has_complex: bool = False, |
|
*, |
|
lr: float, |
|
alpha: float, |
|
eps: float, |
|
weight_decay: float, |
|
momentum: float, |
|
centered: bool, |
|
): |
|
r"""Functional API that performs rmsprop algorithm computation. |
|
|
|
See :class:`~torch.optim.RMSProp` for details. |
|
""" |
|
|
|
|
|
if not torch.compiler.is_compiling() and not all( |
|
isinstance(t, torch.Tensor) for t in state_steps |
|
): |
|
raise RuntimeError( |
|
"API has changed, `state_steps` argument must contain a list of singleton tensors" |
|
) |
|
|
|
if foreach is None: |
|
_, foreach = _default_to_fused_or_foreach( |
|
params, differentiable, use_fused=False |
|
) |
|
|
|
if foreach and torch.jit.is_scripting(): |
|
raise RuntimeError("torch.jit.script not supported with foreach optimizers") |
|
|
|
if foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_rmsprop |
|
else: |
|
func = _single_tensor_rmsprop |
|
|
|
func( |
|
params, |
|
grads, |
|
square_avgs, |
|
grad_avgs, |
|
momentum_buffer_list, |
|
state_steps, |
|
lr=lr, |
|
alpha=alpha, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
momentum=momentum, |
|
centered=centered, |
|
maximize=maximize, |
|
capturable=capturable, |
|
differentiable=differentiable, |
|
has_complex=has_complex, |
|
) |
|
|