|
|
|
r"""Implementation for the NAdam algorithm.""" |
|
from typing import cast, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from .optimizer import ( |
|
_capturable_doc, |
|
_default_to_fused_or_foreach, |
|
_differentiable_doc, |
|
_disable_dynamo_if_unsupported, |
|
_foreach_doc, |
|
_get_capturable_supported_devices, |
|
_get_scalar_dtype, |
|
_get_value, |
|
_maximize_doc, |
|
_params_doc, |
|
_stack_if_compiling, |
|
_use_grad_for_differentiable, |
|
_view_as_real, |
|
Optimizer, |
|
ParamsT, |
|
) |
|
|
|
|
|
__all__ = ["NAdam", "nadam"] |
|
|
|
|
|
class NAdam(Optimizer): |
|
def __init__( |
|
self, |
|
params: ParamsT, |
|
lr: Union[float, Tensor] = 2e-3, |
|
betas: tuple[float, float] = (0.9, 0.999), |
|
eps: float = 1e-8, |
|
weight_decay: float = 0, |
|
momentum_decay: float = 4e-3, |
|
decoupled_weight_decay: bool = False, |
|
*, |
|
foreach: Optional[bool] = None, |
|
maximize: bool = False, |
|
capturable: bool = False, |
|
differentiable: bool = False, |
|
): |
|
if isinstance(lr, Tensor) and lr.numel() != 1: |
|
raise ValueError("Tensor lr must be 1-element") |
|
if not 0.0 <= lr: |
|
raise ValueError(f"Invalid learning rate: {lr}") |
|
if not 0.0 <= eps: |
|
raise ValueError(f"Invalid epsilon value: {eps}") |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") |
|
if not 0.0 <= weight_decay: |
|
raise ValueError(f"Invalid weight_decay value: {weight_decay}") |
|
if not 0.0 <= momentum_decay: |
|
raise ValueError(f"Invalid momentum_decay value: {momentum_decay}") |
|
defaults = dict( |
|
lr=lr, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
momentum_decay=momentum_decay, |
|
decoupled_weight_decay=decoupled_weight_decay, |
|
maximize=maximize, |
|
foreach=foreach, |
|
capturable=capturable, |
|
differentiable=differentiable, |
|
) |
|
super().__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault("maximize", False) |
|
group.setdefault("foreach", None) |
|
group.setdefault("capturable", False) |
|
group.setdefault("differentiable", False) |
|
group.setdefault("decoupled_weight_decay", False) |
|
for p in group["params"]: |
|
p_state = self.state.get(p, []) |
|
if len(p_state) != 0: |
|
if not torch.is_tensor(p_state["step"]): |
|
step_val = float(p_state["step"]) |
|
p_state["step"] = ( |
|
torch.tensor( |
|
step_val, dtype=_get_scalar_dtype(), device=p.device |
|
) |
|
if group["capturable"] |
|
else torch.tensor(step_val, dtype=_get_scalar_dtype()) |
|
) |
|
if not torch.is_tensor(p_state["mu_product"]): |
|
mu_prod_val = p_state["mu_product"] |
|
p_state["mu_product"] = ( |
|
torch.tensor( |
|
mu_prod_val, dtype=_get_scalar_dtype(), device=p.device |
|
) |
|
if group["capturable"] |
|
else torch.tensor(mu_prod_val, dtype=_get_scalar_dtype()) |
|
) |
|
|
|
def _init_group( |
|
self, |
|
group, |
|
params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
mu_products, |
|
state_steps, |
|
): |
|
has_complex = False |
|
for p in group["params"]: |
|
if p.grad is not None: |
|
has_complex |= torch.is_complex(p) |
|
params_with_grad.append(p) |
|
if p.grad.is_sparse: |
|
raise RuntimeError("NAdam does not support sparse gradients") |
|
grads.append(p.grad) |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
|
|
|
|
|
|
state["step"] = ( |
|
torch.zeros((), dtype=_get_scalar_dtype(), device=p.device) |
|
if group["capturable"] |
|
else torch.tensor(0.0, dtype=_get_scalar_dtype()) |
|
) |
|
state["mu_product"] = ( |
|
torch.ones((), dtype=_get_scalar_dtype(), device=p.device) |
|
if group["capturable"] |
|
else torch.tensor(1.0, dtype=_get_scalar_dtype()) |
|
) |
|
|
|
state["exp_avg"] = torch.zeros_like( |
|
p, memory_format=torch.preserve_format |
|
) |
|
|
|
state["exp_avg_sq"] = torch.zeros_like( |
|
p, memory_format=torch.preserve_format |
|
) |
|
|
|
exp_avgs.append(state["exp_avg"]) |
|
exp_avg_sqs.append(state["exp_avg_sq"]) |
|
mu_products.append(state["mu_product"]) |
|
state_steps.append(state["step"]) |
|
return has_complex |
|
|
|
@_use_grad_for_differentiable |
|
def step(self, closure=None): |
|
"""Perform a single optimization step. |
|
|
|
Args: |
|
closure (Callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
self._cuda_graph_capture_health_check() |
|
|
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad: list[Tensor] = [] |
|
grads: list[Tensor] = [] |
|
exp_avgs: list[Tensor] = [] |
|
exp_avg_sqs: list[Tensor] = [] |
|
mu_products: list[Tensor] = [] |
|
state_steps: list[Tensor] = [] |
|
beta1, beta2 = cast(tuple[float, float], group["betas"]) |
|
|
|
has_complex = self._init_group( |
|
group, |
|
params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
mu_products, |
|
state_steps, |
|
) |
|
|
|
nadam( |
|
params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
mu_products, |
|
state_steps, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=group["lr"], |
|
weight_decay=group["weight_decay"], |
|
momentum_decay=group["momentum_decay"], |
|
eps=group["eps"], |
|
maximize=group["maximize"], |
|
decoupled_weight_decay=group["decoupled_weight_decay"], |
|
foreach=group["foreach"], |
|
capturable=group["capturable"], |
|
differentiable=group["differentiable"], |
|
has_complex=has_complex, |
|
) |
|
|
|
return loss |
|
|
|
|
|
NAdam.__doc__ = ( |
|
r"""Implements NAdam algorithm. |
|
|
|
.. math:: |
|
\begin{aligned} |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{input} : \gamma_t \text{ (lr)}, \: \beta_1,\beta_2 \text{ (betas)}, |
|
\: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\ |
|
&\hspace{13mm} \: \lambda \text{ (weight decay)}, \:\psi \text{ (momentum decay)} \\ |
|
&\hspace{13mm} \: \textit{decoupled\_weight\_decay}, \:\textit{maximize} \\ |
|
&\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, |
|
v_0 \leftarrow 0 \text{ ( second moment)} \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
|
&\hspace{5mm}\textbf{if} \: \textit{maximize}: \\ |
|
&\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\ |
|
&\hspace{5mm}\textbf{else} \\ |
|
&\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
|
&\hspace{5mm} \theta_t \leftarrow \theta_{t-1} \\ |
|
&\hspace{5mm} \textbf{if} \: \lambda \neq 0 \\ |
|
&\hspace{10mm}\textbf{if} \: \textit{decoupled\_weight\_decay} \\ |
|
&\hspace{15mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\ |
|
&\hspace{10mm}\textbf{else} \\ |
|
&\hspace{15mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ |
|
&\hspace{5mm} \mu_t \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{t \psi} \big) \\ |
|
&\hspace{5mm} \mu_{t+1} \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{(t+1)\psi}\big)\\ |
|
&\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ |
|
&\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ |
|
&\hspace{5mm}\widehat{m_t} \leftarrow \mu_{t+1} m_t/(1-\prod_{i=1}^{t+1}\mu_i)\\[-1.ex] |
|
& \hspace{11mm} + (1-\mu_t) g_t /(1-\prod_{i=1}^{t} \mu_{i}) \\ |
|
&\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\ |
|
&\hspace{5mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ |
|
\big(\sqrt{\widehat{v_t}} + \epsilon \big) \\ |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
&\bf{return} \: \theta_t \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
\end{aligned} |
|
|
|
For further details regarding the algorithm we refer to `Incorporating Nesterov Momentum into Adam`_. |
|
""" |
|
+ rf""" |
|
Args: |
|
{_params_doc} |
|
lr (float, Tensor, optional): learning rate (default: 2e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
momentum_decay (float, optional): momentum momentum_decay (default: 4e-3) |
|
decoupled_weight_decay (bool, optional): whether to decouple the weight |
|
decay as in AdamW to obtain NAdamW. If True, the algorithm does not |
|
accumulate weight decay in the momentum nor variance. (default: False) |
|
{_foreach_doc} |
|
{_maximize_doc} |
|
{_capturable_doc} |
|
{_differentiable_doc} |
|
|
|
.. _Incorporating Nesterov Momentum into Adam: |
|
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ |
|
.. _Decoupled Weight Decay Regularization: |
|
https://arxiv.org/abs/1711.05101 |
|
|
|
""" |
|
) |
|
|
|
|
|
def _single_tensor_nadam( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
exp_avgs: list[Tensor], |
|
exp_avg_sqs: list[Tensor], |
|
mu_products: list[Tensor], |
|
state_steps: list[Tensor], |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
momentum_decay: float, |
|
eps: float, |
|
decoupled_weight_decay: bool, |
|
maximize: bool, |
|
capturable: bool, |
|
differentiable: bool, |
|
has_complex: bool, |
|
): |
|
for i, param in enumerate(params): |
|
grad = grads[i] if not maximize else -grads[i] |
|
exp_avg = exp_avgs[i] |
|
exp_avg_sq = exp_avg_sqs[i] |
|
mu_product = mu_products[i] |
|
step_t = state_steps[i] |
|
|
|
if torch.is_complex(param): |
|
param = torch.view_as_real(param) |
|
grad = torch.view_as_real(grad) |
|
exp_avg = torch.view_as_real(exp_avg) |
|
exp_avg_sq = torch.view_as_real(exp_avg_sq) |
|
|
|
|
|
if not torch.compiler.is_compiling() and capturable: |
|
capturable_supported_devices = _get_capturable_supported_devices() |
|
assert ( |
|
param.device.type == mu_product.device.type == step_t.device.type |
|
and param.device.type in capturable_supported_devices |
|
), ( |
|
f"If capturable=True, params, mu_products and state_steps must be " |
|
f"on supported devices: {capturable_supported_devices}." |
|
) |
|
|
|
|
|
step_t += 1 |
|
|
|
if capturable: |
|
step = step_t |
|
else: |
|
step = _get_value(step_t) |
|
|
|
bias_correction2 = 1 - beta2**step |
|
|
|
if weight_decay != 0: |
|
if decoupled_weight_decay: |
|
|
|
param.mul_(1 - lr * weight_decay) |
|
else: |
|
grad = grad.add(param, alpha=weight_decay) |
|
|
|
|
|
mu = beta1 * (1.0 - 0.5 * (0.96 ** (step * momentum_decay))) |
|
mu_next = beta1 * (1.0 - 0.5 * (0.96 ** ((step + 1) * momentum_decay))) |
|
|
|
|
|
mu_product *= mu |
|
|
|
|
|
exp_avg.lerp_(grad, 1 - beta1) |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
denom = exp_avg_sq.div(bias_correction2).sqrt() |
|
|
|
if differentiable or capturable: |
|
denom = denom.add(eps) |
|
|
|
|
|
|
|
mu_product_next = mu_product * mu_next |
|
grad = grad * (-lr * (1.0 - mu) / (1.0 - mu_product)) |
|
exp_avg = exp_avg * (-lr * mu_next / (1.0 - mu_product_next)) |
|
param.addcdiv_(grad, denom) |
|
param.addcdiv_(exp_avg, denom) |
|
else: |
|
mu_product_next = _get_value(mu_product) * mu_next |
|
denom.add_(eps) |
|
param.addcdiv_( |
|
grad, denom, value=(-lr * (1.0 - mu) / (1.0 - _get_value(mu_product))) |
|
) |
|
param.addcdiv_( |
|
exp_avg, denom, value=(-lr * mu_next) / (1.0 - mu_product_next) |
|
) |
|
|
|
|
|
def _multi_tensor_nadam( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
exp_avgs: list[Tensor], |
|
exp_avg_sqs: list[Tensor], |
|
mu_products: list[Tensor], |
|
state_steps: list[Tensor], |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
momentum_decay: float, |
|
eps: float, |
|
decoupled_weight_decay: bool, |
|
maximize: bool, |
|
capturable: bool, |
|
differentiable: bool, |
|
has_complex: bool, |
|
): |
|
if len(params) == 0: |
|
return |
|
|
|
assert not differentiable, "_foreach ops don't support autograd" |
|
|
|
|
|
if not torch.compiler.is_compiling() and capturable: |
|
capturable_supported_devices = _get_capturable_supported_devices( |
|
supports_xla=False |
|
) |
|
assert all( |
|
p.device.type == mp.device.type == step.device.type |
|
and p.device.type in capturable_supported_devices |
|
for p, mp, step in zip(params, mu_products, state_steps) |
|
), f"If capturable=True, params, mu_products, and state_steps must be on supported devices: {capturable_supported_devices}." |
|
|
|
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( |
|
[params, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps] |
|
) |
|
for ( |
|
grouped_params_, |
|
grouped_grads_, |
|
grouped_exp_avgs_, |
|
grouped_exp_avg_sqs_, |
|
grouped_mu_products_, |
|
grouped_state_steps_, |
|
), _ in grouped_tensors.values(): |
|
grouped_params = cast(list[Tensor], grouped_params_) |
|
grouped_grads = cast(list[Tensor], grouped_grads_) |
|
grouped_exp_avgs = cast(list[Tensor], grouped_exp_avgs_) |
|
grouped_exp_avg_sqs = cast(list[Tensor], grouped_exp_avg_sqs_) |
|
grouped_mu_products = cast(list[Tensor], grouped_mu_products_) |
|
grouped_state_steps = cast(list[Tensor], grouped_state_steps_) |
|
|
|
|
|
if has_complex: |
|
_view_as_real( |
|
grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_avg_sqs |
|
) |
|
|
|
if maximize: |
|
grouped_grads = torch._foreach_neg(grouped_grads) |
|
|
|
|
|
|
|
|
|
|
|
if not torch.compiler.is_compiling() and grouped_state_steps[0].is_cpu: |
|
torch._foreach_add_( |
|
grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 |
|
) |
|
else: |
|
torch._foreach_add_(grouped_state_steps, 1) |
|
|
|
if weight_decay != 0: |
|
if decoupled_weight_decay: |
|
|
|
torch._foreach_mul_(grouped_params, 1 - lr * weight_decay) |
|
else: |
|
|
|
if maximize: |
|
torch._foreach_add_( |
|
grouped_grads, grouped_params, alpha=weight_decay |
|
) |
|
else: |
|
grouped_grads = torch._foreach_add( |
|
grouped_grads, grouped_params, alpha=weight_decay |
|
) |
|
|
|
|
|
torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1) |
|
|
|
torch._foreach_mul_(grouped_exp_avg_sqs, beta2) |
|
torch._foreach_addcmul_( |
|
grouped_exp_avg_sqs, grouped_grads, grouped_grads, 1 - beta2 |
|
) |
|
|
|
exp_avg_sq_sqrt = torch._foreach_sqrt(grouped_exp_avg_sqs) |
|
|
|
bias_correction_sqrt: Union[tuple[Tensor, ...], list[Tensor]] |
|
mus: Union[tuple[Tensor, ...], list[Tensor]] |
|
mu_nexts: Union[tuple[Tensor, ...], list[Tensor]] |
|
if capturable: |
|
|
|
exponent = torch._foreach_mul(grouped_state_steps, momentum_decay) |
|
mus = torch._foreach_pow(0.96, exponent) |
|
torch._foreach_mul_(mus, -0.5) |
|
torch._foreach_add_(mus, 1.0) |
|
torch._foreach_mul_(mus, beta1) |
|
|
|
|
|
torch._foreach_add_(exponent, momentum_decay) |
|
mu_nexts = torch._foreach_pow(0.96, exponent) |
|
torch._foreach_mul_(mu_nexts, -0.5) |
|
torch._foreach_add_(mu_nexts, 1.0) |
|
torch._foreach_mul_(mu_nexts, beta1) |
|
|
|
|
|
del exponent |
|
|
|
bias_correction_sqrt = torch._foreach_pow(beta2, grouped_state_steps) |
|
|
|
torch._foreach_sub_(bias_correction_sqrt, 1.0) |
|
torch._foreach_neg_(bias_correction_sqrt) |
|
torch._foreach_sqrt_(bias_correction_sqrt) |
|
else: |
|
bias_correction_sqrt = [ |
|
(1 - beta2 ** _get_value(step)) ** 0.5 for step in grouped_state_steps |
|
] |
|
mus = [ |
|
beta1 * (1.0 - 0.5 * (0.96 ** (_get_value(step) * momentum_decay))) |
|
for step in grouped_state_steps |
|
] |
|
mu_nexts = [ |
|
beta1 |
|
* (1.0 - 0.5 * (0.96 ** ((_get_value(step) + 1) * momentum_decay))) |
|
for step in grouped_state_steps |
|
] |
|
|
|
|
|
torch._foreach_mul_(grouped_mu_products, mus) |
|
|
|
torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt) |
|
torch._foreach_add_(exp_avg_sq_sqrt, eps) |
|
|
|
|
|
del bias_correction_sqrt |
|
|
|
if capturable: |
|
|
|
torch._foreach_sub_(mus, 1.0) |
|
torch._foreach_mul_(mus, lr) |
|
|
|
denom = torch._foreach_sub(grouped_mu_products, 1.0) |
|
torch._foreach_neg_(denom) |
|
torch._foreach_div_(mus, denom) |
|
|
|
step_size_grads = mus |
|
|
|
del denom |
|
|
|
|
|
denom = torch._foreach_mul(grouped_mu_products, mu_nexts) |
|
torch._foreach_mul_(mu_nexts, lr) |
|
|
|
|
|
torch._foreach_sub_(denom, 1.0) |
|
torch._foreach_div_(mu_nexts, denom) |
|
|
|
step_size_expavg = mu_nexts |
|
|
|
del denom |
|
|
|
|
|
|
|
numerator = torch._foreach_mul(step_size_grads, grouped_grads) |
|
torch._foreach_addcmul_(numerator, step_size_expavg, grouped_exp_avgs) |
|
|
|
|
|
torch._foreach_addcdiv_(grouped_params, numerator, exp_avg_sq_sqrt) |
|
else: |
|
step_size_grads = _stack_if_compiling( |
|
[ |
|
(_get_value(lr) * (1.0 - mu) / (1.0 - _get_value(mu_product))) * -1 |
|
for mu_product, mu in zip(grouped_mu_products, mus) |
|
] |
|
) |
|
step_size_expavg = _stack_if_compiling( |
|
[ |
|
( |
|
_get_value(lr) |
|
* mu_next |
|
/ (1.0 - _get_value(mu_product) * mu_next) |
|
) |
|
* -1 |
|
for mu_product, mu_next in zip(grouped_mu_products, mu_nexts) |
|
] |
|
) |
|
|
|
torch._foreach_addcdiv_( |
|
grouped_params, grouped_grads, exp_avg_sq_sqrt, step_size_grads |
|
) |
|
torch._foreach_addcdiv_( |
|
grouped_params, grouped_exp_avgs, exp_avg_sq_sqrt, step_size_expavg |
|
) |
|
|
|
|
|
@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_nadam) |
|
def nadam( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
exp_avgs: list[Tensor], |
|
exp_avg_sqs: list[Tensor], |
|
mu_products: list[Tensor], |
|
state_steps: list[Tensor], |
|
|
|
|
|
decoupled_weight_decay: bool = False, |
|
foreach: Optional[bool] = None, |
|
capturable: bool = False, |
|
differentiable: bool = False, |
|
has_complex: bool = False, |
|
maximize: bool = False, |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
lr: float, |
|
weight_decay: float, |
|
momentum_decay: float, |
|
eps: float, |
|
): |
|
r"""Functional API that performs NAdam algorithm computation. |
|
|
|
See :class:`~torch.optim.NAdam` for details. |
|
""" |
|
if not all(isinstance(t, torch.Tensor) for t in state_steps): |
|
raise RuntimeError( |
|
"API has changed, `state_steps` argument must contain a list of singleton tensors" |
|
) |
|
|
|
if not all(isinstance(t, torch.Tensor) for t in mu_products): |
|
raise RuntimeError( |
|
"API has changed, `mu_products` argument must contain a list of singleton tensors" |
|
) |
|
|
|
if foreach is None: |
|
_, foreach = _default_to_fused_or_foreach( |
|
params, differentiable, use_fused=False |
|
) |
|
|
|
if foreach and torch.jit.is_scripting(): |
|
raise RuntimeError("torch.jit.script not supported with foreach optimizers") |
|
|
|
if foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_nadam |
|
else: |
|
func = _single_tensor_nadam |
|
|
|
func( |
|
params, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
mu_products, |
|
state_steps, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
momentum_decay=momentum_decay, |
|
maximize=maximize, |
|
decoupled_weight_decay=decoupled_weight_decay, |
|
eps=eps, |
|
capturable=capturable, |
|
differentiable=differentiable, |
|
has_complex=has_complex, |
|
) |
|
|