|
|
|
from typing import cast, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from .optimizer import ( |
|
_capturable_doc, |
|
_default_to_fused_or_foreach, |
|
_differentiable_doc, |
|
_disable_dynamo_if_unsupported, |
|
_foreach_doc, |
|
_get_capturable_supported_devices, |
|
_get_scalar_dtype, |
|
_get_value, |
|
_maximize_doc, |
|
_params_doc, |
|
_use_grad_for_differentiable, |
|
_view_as_real, |
|
Optimizer, |
|
ParamsT, |
|
) |
|
|
|
|
|
__all__ = ["ASGD", "asgd"] |
|
|
|
|
|
class ASGD(Optimizer): |
|
def __init__( |
|
self, |
|
params: ParamsT, |
|
lr: Union[float, Tensor] = 1e-2, |
|
lambd: float = 1e-4, |
|
alpha: float = 0.75, |
|
t0: float = 1e6, |
|
weight_decay: float = 0, |
|
foreach: Optional[bool] = None, |
|
maximize: bool = False, |
|
differentiable: bool = False, |
|
capturable: bool = False, |
|
): |
|
if isinstance(lr, Tensor) and lr.numel() != 1: |
|
raise ValueError("Tensor lr must be 1-element") |
|
if not 0.0 <= lr: |
|
raise ValueError(f"Invalid learning rate: {lr}") |
|
if not 0.0 <= weight_decay: |
|
raise ValueError(f"Invalid weight_decay value: {weight_decay}") |
|
|
|
defaults = dict( |
|
lr=lr, |
|
lambd=lambd, |
|
alpha=alpha, |
|
t0=t0, |
|
weight_decay=weight_decay, |
|
foreach=foreach, |
|
maximize=maximize, |
|
differentiable=differentiable, |
|
capturable=capturable, |
|
) |
|
super().__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault("foreach", None) |
|
group.setdefault("maximize", False) |
|
group.setdefault("differentiable", False) |
|
group.setdefault("capturable", False) |
|
for p in group["params"]: |
|
p_state = self.state.get(p, []) |
|
if len(p_state) != 0: |
|
if not torch.is_tensor(p_state["step"]): |
|
step_val = float(p_state["step"]) |
|
p_state["step"] = torch.tensor( |
|
step_val, dtype=_get_scalar_dtype(), device=p.device |
|
) |
|
if not torch.is_tensor(p_state["eta"]): |
|
p_state["eta"] = torch.tensor( |
|
p_state["eta"], dtype=_get_scalar_dtype(), device=p.device |
|
) |
|
if not torch.is_tensor(p_state["mu"]): |
|
p_state["mu"] = torch.tensor( |
|
p_state["mu"], dtype=_get_scalar_dtype(), device=p.device |
|
) |
|
|
|
def _init_group(self, group, params_with_grad, grads, mus, axs, etas, state_steps): |
|
has_complex = False |
|
for p in group["params"]: |
|
if p.grad is not None: |
|
has_complex |= torch.is_complex(p) |
|
params_with_grad.append(p) |
|
if p.grad.is_sparse: |
|
raise RuntimeError("ASGD does not support sparse gradients") |
|
grads.append(p.grad) |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
state["step"] = torch.zeros( |
|
(), device=p.device, dtype=_get_scalar_dtype() |
|
) |
|
state["eta"] = ( |
|
torch.as_tensor( |
|
group["lr"], device=p.device, dtype=_get_scalar_dtype() |
|
) |
|
.clone() |
|
.detach() |
|
) |
|
state["mu"] = torch.ones( |
|
(), device=p.device, dtype=_get_scalar_dtype() |
|
) |
|
state["ax"] = torch.zeros_like( |
|
p, memory_format=torch.preserve_format |
|
) |
|
|
|
mus.append(state["mu"]) |
|
axs.append(state["ax"]) |
|
etas.append(state["eta"]) |
|
state_steps.append(state["step"]) |
|
return has_complex |
|
|
|
@_use_grad_for_differentiable |
|
def step(self, closure=None): |
|
"""Perform a single optimization step. |
|
|
|
Args: |
|
closure (Callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
self._cuda_graph_capture_health_check() |
|
|
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad: list[Tensor] = [] |
|
grads: list[Tensor] = [] |
|
mus: list[Tensor] = [] |
|
axs: list[Tensor] = [] |
|
etas: list[Tensor] = [] |
|
state_steps: list[Tensor] = [] |
|
|
|
has_complex = self._init_group( |
|
group, params_with_grad, grads, mus, axs, etas, state_steps |
|
) |
|
|
|
asgd( |
|
params_with_grad, |
|
grads, |
|
axs, |
|
mus, |
|
etas, |
|
state_steps, |
|
lambd=group["lambd"], |
|
lr=group["lr"], |
|
t0=group["t0"], |
|
alpha=group["alpha"], |
|
weight_decay=group["weight_decay"], |
|
foreach=group["foreach"], |
|
maximize=group["maximize"], |
|
differentiable=group["differentiable"], |
|
capturable=group["capturable"], |
|
has_complex=has_complex, |
|
) |
|
|
|
return loss |
|
|
|
|
|
ASGD.__doc__ = rf"""Implements Averaged Stochastic Gradient Descent. |
|
|
|
It has been proposed in `Acceleration of stochastic approximation by |
|
averaging`_. |
|
|
|
Args: |
|
{_params_doc} |
|
lr (float, Tensor, optional): learning rate (default: 1e-2) |
|
lambd (float, optional): decay term (default: 1e-4) |
|
alpha (float, optional): power for eta update (default: 0.75) |
|
t0 (float, optional): point at which to start averaging (default: 1e6) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
{_foreach_doc} |
|
{_maximize_doc} |
|
{_differentiable_doc} |
|
{_capturable_doc} |
|
|
|
.. _Acceleration of stochastic approximation by averaging: |
|
https://dl.acm.org/citation.cfm?id=131098 |
|
|
|
""" |
|
|
|
|
|
def _single_tensor_asgd( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
axs: list[Tensor], |
|
mus: list[Tensor], |
|
etas: list[Tensor], |
|
state_steps: list[Tensor], |
|
*, |
|
lambd: float, |
|
lr: float, |
|
t0: float, |
|
alpha: float, |
|
weight_decay: float, |
|
maximize: bool, |
|
differentiable: bool, |
|
capturable: bool, |
|
has_complex: bool, |
|
): |
|
for i, param in enumerate(params): |
|
grad = grads[i] |
|
grad = grad if not maximize else -grad |
|
mu = mus[i] |
|
ax = axs[i] |
|
eta = etas[i] |
|
step_t = state_steps[i] |
|
|
|
|
|
if not torch.compiler.is_compiling() and capturable: |
|
capturable_supported_devices = _get_capturable_supported_devices() |
|
assert ( |
|
param.device.type |
|
== mu.device.type |
|
== eta.device.type |
|
== step_t.device.type |
|
and param.device.type in capturable_supported_devices |
|
), ( |
|
f"If capturable=True, params, mus, etas, and state_steps must be " |
|
f"on supported devices: {capturable_supported_devices}." |
|
) |
|
|
|
if torch.is_complex(param): |
|
grad = torch.view_as_real(grad) |
|
param = torch.view_as_real(param) |
|
ax = torch.view_as_real(ax) |
|
|
|
|
|
step_t += 1 |
|
|
|
if weight_decay != 0: |
|
grad = grad.add(param, alpha=weight_decay) |
|
|
|
if capturable: |
|
param.mul_(1 - lambd * eta) |
|
param.addcmul_(grad, eta, value=-1) |
|
else: |
|
eta_value = _get_value(eta) |
|
param.mul_(1 - lambd * eta_value) |
|
param.add_(grad, alpha=-eta_value) |
|
|
|
|
|
if capturable or mu.item() != 1: |
|
ax.add_(param.sub(ax).mul_(mu)) |
|
else: |
|
ax.copy_(param) |
|
|
|
if capturable: |
|
eta.copy_(lr / ((1 + lambd * lr * step_t) ** alpha)) |
|
mu.copy_(1 / torch.maximum(step_t - t0, torch.ones_like(step_t))) |
|
else: |
|
step = _get_value(step_t) |
|
new_eta = torch.as_tensor(lr / ((1 + lambd * lr * step) ** alpha)) |
|
eta.copy_(new_eta) |
|
new_mu = torch.as_tensor(1 / max(1, step - t0)) |
|
mu.copy_(new_mu) |
|
|
|
|
|
def _multi_tensor_asgd( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
axs: list[Tensor], |
|
mus: list[Tensor], |
|
etas: list[Tensor], |
|
state_steps: list[Tensor], |
|
*, |
|
lambd: float, |
|
lr: float, |
|
t0: float, |
|
alpha: float, |
|
weight_decay: float, |
|
maximize: bool, |
|
differentiable: bool, |
|
capturable: bool, |
|
has_complex: bool, |
|
): |
|
if len(params) == 0: |
|
return |
|
|
|
assert not differentiable, "_foreach ops don't support autograd" |
|
|
|
|
|
if not torch.compiler.is_compiling() and capturable: |
|
capturable_supported_devices = _get_capturable_supported_devices( |
|
supports_xla=False |
|
) |
|
assert all( |
|
p.device.type == mu.device.type == eta.device.type == step.device.type |
|
and p.device.type in capturable_supported_devices |
|
for p, mu, eta, step in zip(params, mus, etas, state_steps) |
|
), f"If capturable=True, params, mus, etas, and state_steps must be on supported devices: {capturable_supported_devices}." |
|
|
|
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( |
|
[params, grads, axs, mus, etas, state_steps] |
|
) |
|
for (device, _), ( |
|
( |
|
grouped_params_, |
|
grouped_grads_, |
|
grouped_axs_, |
|
grouped_mus_, |
|
grouped_etas_, |
|
grouped_state_steps_, |
|
), |
|
_, |
|
) in grouped_tensors.items(): |
|
grouped_params = cast(list[Tensor], grouped_params_) |
|
grouped_grads = cast(list[Tensor], grouped_grads_) |
|
grouped_axs = cast(list[Tensor], grouped_axs_) |
|
grouped_mus = cast(list[Tensor], grouped_mus_) |
|
grouped_etas = cast(list[Tensor], grouped_etas_) |
|
grouped_state_steps = cast(list[Tensor], grouped_state_steps_) |
|
|
|
if has_complex: |
|
_view_as_real(grouped_params, grouped_grads, grouped_axs) |
|
|
|
if maximize: |
|
grouped_grads = torch._foreach_neg(grouped_grads) |
|
|
|
|
|
|
|
|
|
|
|
if not torch.compiler.is_compiling() and grouped_state_steps[0].is_cpu: |
|
torch._foreach_add_( |
|
grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 |
|
) |
|
else: |
|
torch._foreach_add_(grouped_state_steps, 1) |
|
|
|
|
|
intermediate: Union[tuple[Tensor, ...], list[Tensor]] |
|
if weight_decay != 0: |
|
if maximize: |
|
torch._foreach_add_(grouped_grads, grouped_params, alpha=weight_decay) |
|
intermediate = grouped_grads |
|
else: |
|
intermediate = torch._foreach_add( |
|
grouped_grads, grouped_params, alpha=weight_decay |
|
) |
|
|
|
torch._foreach_add_(intermediate, grouped_params, alpha=lambd) |
|
else: |
|
intermediate = torch._foreach_add( |
|
grouped_grads, grouped_params, alpha=lambd |
|
) |
|
|
|
|
|
|
|
|
|
|
|
torch._foreach_addcmul_(grouped_params, intermediate, grouped_etas, value=-1) |
|
del intermediate |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
intermediate = torch._foreach_sub(grouped_params, grouped_axs) |
|
torch._foreach_addcmul_(grouped_axs, intermediate, grouped_mus) |
|
del intermediate |
|
|
|
new_etas: Union[tuple[Tensor, ...], list[Tensor]] |
|
new_mus: Union[tuple[Tensor, ...], list[Tensor]] |
|
if capturable: |
|
|
|
new_mus = torch._foreach_sub(grouped_state_steps, t0) |
|
torch._foreach_maximum_(new_mus, 1.0) |
|
torch._foreach_reciprocal_(new_mus) |
|
torch._foreach_copy_(grouped_mus, new_mus) |
|
del new_mus |
|
|
|
|
|
new_etas = torch._foreach_mul(grouped_state_steps, lambd) |
|
torch._foreach_mul_(new_etas, lr) |
|
torch._foreach_add_(new_etas, 1) |
|
torch._foreach_pow_(new_etas, alpha) |
|
torch._foreach_reciprocal_(new_etas) |
|
torch._foreach_mul_(new_etas, lr) |
|
torch._foreach_copy_(grouped_etas, new_etas) |
|
else: |
|
new_etas = [ |
|
torch.as_tensor(lr / ((1 + lambd * lr * step) ** alpha), device=device) |
|
for step in grouped_state_steps |
|
] |
|
new_mus = [ |
|
torch.as_tensor(1 / max(1, _get_value(step) - t0), device=device) |
|
for step in grouped_state_steps |
|
] |
|
torch._foreach_copy_(grouped_etas, new_etas) |
|
torch._foreach_copy_(grouped_mus, new_mus) |
|
|
|
|
|
@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_asgd) |
|
def asgd( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
axs: list[Tensor], |
|
mus: list[Tensor], |
|
etas: list[Tensor], |
|
state_steps: list[Tensor], |
|
|
|
|
|
foreach: Optional[bool] = None, |
|
maximize: bool = False, |
|
differentiable: bool = False, |
|
capturable: bool = False, |
|
has_complex: bool = False, |
|
*, |
|
lambd: float, |
|
lr: float, |
|
t0: float, |
|
alpha: float, |
|
weight_decay: float, |
|
): |
|
r"""Functional API that performs asgd algorithm computation. |
|
|
|
See :class:`~torch.optim.ASGD` for details. |
|
""" |
|
if foreach is None: |
|
_, foreach = _default_to_fused_or_foreach( |
|
params, differentiable, use_fused=False |
|
) |
|
|
|
if foreach and torch.jit.is_scripting(): |
|
raise RuntimeError("torch.jit.script not supported with foreach optimizers") |
|
|
|
if foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_asgd |
|
else: |
|
func = _single_tensor_asgd |
|
|
|
func( |
|
params, |
|
grads, |
|
axs, |
|
mus, |
|
etas, |
|
state_steps, |
|
lambd=lambd, |
|
lr=lr, |
|
t0=t0, |
|
alpha=alpha, |
|
weight_decay=weight_decay, |
|
maximize=maximize, |
|
differentiable=differentiable, |
|
capturable=capturable, |
|
has_complex=has_complex, |
|
) |
|
|