|
|
|
from typing import cast, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from .optimizer import ( |
|
_default_to_fused_or_foreach, |
|
_device_dtype_check_for_fused, |
|
_differentiable_doc, |
|
_foreach_doc, |
|
_get_scalar_dtype, |
|
_get_value, |
|
_maximize_doc, |
|
_params_doc, |
|
_use_grad_for_differentiable, |
|
_view_as_real, |
|
Optimizer, |
|
ParamsT, |
|
) |
|
|
|
|
|
__all__ = ["Adagrad", "adagrad"] |
|
|
|
|
|
class Adagrad(Optimizer): |
|
def __init__( |
|
self, |
|
params: ParamsT, |
|
lr: Union[float, Tensor] = 1e-2, |
|
lr_decay: float = 0, |
|
weight_decay: float = 0, |
|
initial_accumulator_value: float = 0, |
|
eps: float = 1e-10, |
|
foreach: Optional[bool] = None, |
|
*, |
|
maximize: bool = False, |
|
differentiable: bool = False, |
|
fused: Optional[bool] = None, |
|
): |
|
if isinstance(lr, Tensor) and lr.numel() != 1: |
|
raise ValueError("Tensor lr must be 1-element") |
|
if not 0.0 <= lr: |
|
raise ValueError(f"Invalid learning rate: {lr}") |
|
if not 0.0 <= lr_decay: |
|
raise ValueError(f"Invalid lr_decay value: {lr_decay}") |
|
if not 0.0 <= weight_decay: |
|
raise ValueError(f"Invalid weight_decay value: {weight_decay}") |
|
if not 0.0 <= initial_accumulator_value: |
|
raise ValueError( |
|
f"Invalid initial_accumulator_value value: {initial_accumulator_value}" |
|
) |
|
if not 0.0 <= eps: |
|
raise ValueError(f"Invalid epsilon value: {eps}") |
|
|
|
defaults = dict( |
|
lr=lr, |
|
lr_decay=lr_decay, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
initial_accumulator_value=initial_accumulator_value, |
|
foreach=foreach, |
|
maximize=maximize, |
|
differentiable=differentiable, |
|
fused=fused, |
|
) |
|
super().__init__(params, defaults) |
|
|
|
if fused: |
|
if differentiable: |
|
raise RuntimeError("`fused` does not support `differentiable`") |
|
if foreach: |
|
raise RuntimeError("`fused` and `foreach` cannot be `True` together.") |
|
self._need_device_dtype_check_for_fused = True |
|
|
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
state = self.state[p] |
|
state["step"] = ( |
|
torch.zeros( |
|
(), |
|
dtype=_get_scalar_dtype(is_fused=group["fused"]), |
|
device=p.device, |
|
) |
|
if group["fused"] |
|
else torch.tensor(0.0, dtype=_get_scalar_dtype()) |
|
) |
|
init_value = ( |
|
complex(initial_accumulator_value, initial_accumulator_value) |
|
if torch.is_complex(p) |
|
else initial_accumulator_value |
|
) |
|
state["sum"] = torch.full_like( |
|
p, init_value, memory_format=torch.preserve_format |
|
) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
|
|
|
|
fused = None |
|
for group in self.param_groups: |
|
group.setdefault("foreach", None) |
|
group.setdefault("maximize", False) |
|
group.setdefault("differentiable", False) |
|
fused = group.setdefault("fused", None) |
|
|
|
state_values = list(self.state.values()) |
|
step_is_tensor = (len(state_values) != 0) and torch.is_tensor( |
|
state_values[0]["step"] |
|
) |
|
if not step_is_tensor: |
|
for s in state_values: |
|
s["step"] = torch.tensor( |
|
float(s["step"]), dtype=_get_scalar_dtype(is_fused=fused) |
|
) |
|
|
|
def share_memory(self): |
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
state = self.state[p] |
|
state["sum"].share_memory_() |
|
|
|
def _init_group(self, group, params_with_grad, grads, state_sums, state_steps): |
|
has_sparse_grad, has_complex = False, False |
|
for p in group["params"]: |
|
if p.grad is not None: |
|
if group["fused"] and getattr( |
|
self, |
|
"_need_device_dtype_check_for_fused", |
|
True, |
|
): |
|
_device_dtype_check_for_fused(p, cuda_unsupported=True) |
|
self._need_device_dtype_check_for_fused = False |
|
has_sparse_grad |= p.grad.is_sparse |
|
has_complex |= torch.is_complex(p) |
|
params_with_grad.append(p) |
|
grads.append(p.grad) |
|
state = self.state[p] |
|
state_sums.append(state["sum"]) |
|
state_steps.append(state["step"]) |
|
|
|
return has_sparse_grad, has_complex |
|
|
|
@_use_grad_for_differentiable |
|
def step(self, closure=None): |
|
"""Perform a single optimization step. |
|
|
|
Args: |
|
closure (Callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
|
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad: list[Tensor] = [] |
|
grads: list[Tensor] = [] |
|
state_sums: list[Tensor] = [] |
|
state_steps: list[Tensor] = [] |
|
|
|
has_sparse_grad, has_complex = self._init_group( |
|
group, params_with_grad, grads, state_sums, state_steps |
|
) |
|
|
|
adagrad( |
|
params_with_grad, |
|
grads, |
|
state_sums, |
|
state_steps, |
|
lr=group["lr"], |
|
weight_decay=group["weight_decay"], |
|
lr_decay=group["lr_decay"], |
|
eps=group["eps"], |
|
has_sparse_grad=has_sparse_grad, |
|
foreach=group["foreach"], |
|
maximize=group["maximize"], |
|
differentiable=group["differentiable"], |
|
has_complex=has_complex, |
|
fused=group["fused"], |
|
grad_scale=getattr(self, "grad_scale", None), |
|
found_inf=getattr(self, "found_inf", None), |
|
) |
|
|
|
return loss |
|
|
|
|
|
Adagrad.__doc__ = ( |
|
r"""Implements Adagrad algorithm. |
|
|
|
.. math:: |
|
\begin{aligned} |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta) |
|
\text{ (objective)}, \: \lambda \text{ (weight decay)}, \\ |
|
&\hspace{12mm} \tau \text{ (initial accumulator value)}, \: \eta\text{ (lr decay)}\\ |
|
&\textbf{initialize} : state\_sum_0 \leftarrow \tau \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\ |
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ |
|
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ |
|
&\hspace{5mm} \tilde{\gamma} \leftarrow \gamma / (1 +(t-1) \eta) \\ |
|
&\hspace{5mm} \textbf{if} \: \lambda \neq 0 \\ |
|
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ |
|
&\hspace{5mm}state\_sum_t \leftarrow state\_sum_{t-1} + g^2_t \\ |
|
&\hspace{5mm}\theta_t \leftarrow |
|
\theta_{t-1}- \tilde{\gamma} \frac{g_t}{\sqrt{state\_sum_t}+\epsilon} \\ |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
&\bf{return} \: \theta_t \\[-1.ex] |
|
&\rule{110mm}{0.4pt} \\[-1.ex] |
|
\end{aligned} |
|
|
|
For further details regarding the algorithm we refer to `Adaptive Subgradient Methods for Online Learning |
|
and Stochastic Optimization`_. |
|
""" |
|
+ rf""" |
|
Args: |
|
{_params_doc} |
|
lr (float, Tensor, optional): learning rate (default: 1e-2) |
|
lr_decay (float, optional): learning rate decay (default: 0) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
initial_accumulator_value (float, optional): initial value of the |
|
sum of squares of gradients (default: 0) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-10) |
|
{_foreach_doc} |
|
{_maximize_doc} |
|
{_differentiable_doc} |
|
fused (bool, optional): whether the fused implementation (CPU only) is used. |
|
Currently, `torch.float64`, `torch.float32`, `torch.float16`, and `torch.bfloat16` |
|
are supported. (default: None). Please note that the fused implementations does not |
|
support sparse or complex gradients. |
|
.. _Adaptive Subgradient Methods for Online Learning and Stochastic |
|
Optimization: http://jmlr.org/papers/v12/duchi11a.html |
|
|
|
""" |
|
) |
|
|
|
|
|
def adagrad( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
state_sums: list[Tensor], |
|
state_steps: list[Tensor], |
|
fused: Optional[bool] = None, |
|
grad_scale: Optional[Tensor] = None, |
|
found_inf: Optional[Tensor] = None, |
|
|
|
|
|
has_sparse_grad: bool = False, |
|
foreach: Optional[bool] = None, |
|
differentiable: bool = False, |
|
has_complex: bool = False, |
|
*, |
|
lr: float, |
|
weight_decay: float, |
|
lr_decay: float, |
|
eps: float, |
|
maximize: bool, |
|
): |
|
r"""Functional API that performs Adagrad algorithm computation. |
|
|
|
See :class:`~torch.optim.Adagrad` for details. |
|
""" |
|
if not all(isinstance(t, torch.Tensor) for t in state_steps): |
|
raise RuntimeError( |
|
"API has changed, `state_steps` argument must contain a list of singleton tensors" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if fused is None and foreach is None: |
|
_, foreach = _default_to_fused_or_foreach( |
|
params, differentiable, use_fused=False |
|
) |
|
|
|
if fused is None: |
|
fused = False |
|
if foreach is None: |
|
foreach = False |
|
|
|
if foreach and torch.jit.is_scripting(): |
|
raise RuntimeError("torch.jit.script not supported with foreach optimizers") |
|
if fused and torch.jit.is_scripting(): |
|
raise RuntimeError("torch.jit.script not supported with fused optimizers") |
|
|
|
if fused and not torch.jit.is_scripting(): |
|
func = _fused_adagrad |
|
elif foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_adagrad |
|
else: |
|
func = _single_tensor_adagrad |
|
|
|
func( |
|
params, |
|
grads, |
|
state_sums, |
|
state_steps, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
lr_decay=lr_decay, |
|
eps=eps, |
|
has_sparse_grad=has_sparse_grad, |
|
maximize=maximize, |
|
differentiable=differentiable, |
|
has_complex=has_complex, |
|
grad_scale=grad_scale, |
|
found_inf=found_inf, |
|
) |
|
|
|
|
|
def _make_sparse(grad, grad_indices, values): |
|
size = grad.size() |
|
return torch.sparse_coo_tensor(grad_indices, values, size) |
|
|
|
|
|
def _single_tensor_adagrad( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
state_sums: list[Tensor], |
|
state_steps: list[Tensor], |
|
grad_scale: Optional[Tensor], |
|
found_inf: Optional[Tensor], |
|
*, |
|
lr: float, |
|
weight_decay: float, |
|
lr_decay: float, |
|
eps: float, |
|
has_sparse_grad: bool, |
|
maximize: bool, |
|
differentiable: bool, |
|
has_complex: bool, |
|
): |
|
assert grad_scale is None and found_inf is None |
|
for param, grad, state_sum, step_t in zip(params, grads, state_sums, state_steps): |
|
|
|
step_t += 1 |
|
step = _get_value(step_t) |
|
grad = grad if not maximize else -grad |
|
|
|
if weight_decay != 0: |
|
if grad.is_sparse: |
|
raise RuntimeError( |
|
"weight_decay option is not compatible with sparse gradients" |
|
) |
|
grad = grad.add(param, alpha=weight_decay) |
|
|
|
clr = lr / (1 + (step - 1) * lr_decay) |
|
|
|
if grad.is_sparse: |
|
grad = grad.coalesce() |
|
grad_indices = grad._indices() |
|
grad_values = grad._values() |
|
|
|
state_sum.add_(_make_sparse(grad, grad_indices, grad_values.pow(2))) |
|
std = state_sum.sparse_mask(grad) |
|
std_values = std._values().sqrt_().add_(eps) |
|
param.add_( |
|
_make_sparse(grad, grad_indices, grad_values / std_values), alpha=-clr |
|
) |
|
else: |
|
is_complex = torch.is_complex(param) |
|
if is_complex: |
|
grad = torch.view_as_real(grad) |
|
state_sum = torch.view_as_real(state_sum) |
|
param = torch.view_as_real(param) |
|
state_sum.addcmul_(grad, grad, value=1) |
|
if differentiable: |
|
std = state_sum.sqrt() + eps |
|
else: |
|
std = state_sum.sqrt().add_(eps) |
|
param.addcdiv_(grad, std, value=-clr) |
|
if is_complex: |
|
param = torch.view_as_complex(param) |
|
state_sum = torch.view_as_complex(state_sum) |
|
|
|
|
|
def _multi_tensor_adagrad( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
state_sums: list[Tensor], |
|
state_steps: list[Tensor], |
|
grad_scale: Optional[Tensor], |
|
found_inf: Optional[Tensor], |
|
*, |
|
lr: float, |
|
weight_decay: float, |
|
lr_decay: float, |
|
eps: float, |
|
has_sparse_grad: bool, |
|
maximize: bool, |
|
differentiable: bool, |
|
has_complex: bool, |
|
): |
|
assert not differentiable, "_foreach ops don't support autograd" |
|
assert grad_scale is None and found_inf is None |
|
|
|
|
|
if len(params) == 0: |
|
return |
|
|
|
grouped_tensorlists = Optimizer._group_tensors_by_device_and_dtype( |
|
[params, grads, state_sums, state_steps] |
|
) |
|
for ( |
|
device_params_, |
|
device_grads_, |
|
device_state_sums_, |
|
device_state_steps_, |
|
), _ in grouped_tensorlists.values(): |
|
device_params = cast(list[Tensor], device_params_) |
|
device_grads = cast(list[Tensor], device_grads_) |
|
device_state_sums = cast(list[Tensor], device_state_sums_) |
|
device_state_steps = cast(list[Tensor], device_state_steps_) |
|
|
|
device_has_sparse_grad = has_sparse_grad and any( |
|
grad.is_sparse for grad in device_grads |
|
) |
|
|
|
if device_has_sparse_grad: |
|
_single_tensor_adagrad( |
|
device_params, |
|
device_grads, |
|
device_state_sums, |
|
device_state_steps, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
lr_decay=lr_decay, |
|
eps=eps, |
|
has_sparse_grad=True, |
|
maximize=maximize, |
|
differentiable=differentiable, |
|
has_complex=has_complex, |
|
grad_scale=grad_scale, |
|
found_inf=found_inf, |
|
) |
|
continue |
|
|
|
|
|
if has_complex: |
|
_view_as_real(device_params, device_grads, device_state_sums) |
|
|
|
if maximize: |
|
device_grads = torch._foreach_neg(device_grads) |
|
|
|
|
|
|
|
|
|
|
|
if not torch.compiler.is_compiling() and device_state_steps[0].is_cpu: |
|
torch._foreach_add_( |
|
device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 |
|
) |
|
else: |
|
torch._foreach_add_(device_state_steps, 1) |
|
|
|
if weight_decay != 0: |
|
|
|
if maximize: |
|
torch._foreach_add_(device_grads, device_params, alpha=weight_decay) |
|
else: |
|
device_grads = torch._foreach_add( |
|
device_grads, device_params, alpha=weight_decay |
|
) |
|
|
|
minus_clr = [ |
|
-lr / (1 + (_get_value(step) - 1) * lr_decay) for step in device_state_steps |
|
] |
|
|
|
torch._foreach_addcmul_(device_state_sums, device_grads, device_grads, value=1) |
|
|
|
std = torch._foreach_sqrt(device_state_sums) |
|
torch._foreach_add_(std, eps) |
|
|
|
if weight_decay != 0 or maximize: |
|
|
|
torch._foreach_mul_(device_grads, minus_clr) |
|
numerator = device_grads |
|
else: |
|
numerator = torch._foreach_mul(device_grads, minus_clr) |
|
|
|
torch._foreach_addcdiv_(device_params, numerator, std) |
|
|
|
|
|
def _fused_adagrad( |
|
params: list[Tensor], |
|
grads: list[Tensor], |
|
state_sums: list[Tensor], |
|
state_steps: list[Tensor], |
|
grad_scale: Optional[Tensor], |
|
found_inf: Optional[Tensor], |
|
*, |
|
lr: float, |
|
weight_decay: float, |
|
lr_decay: float, |
|
eps: float, |
|
has_sparse_grad: bool, |
|
maximize: bool, |
|
differentiable: bool, |
|
has_complex: bool, |
|
) -> None: |
|
if not params: |
|
return |
|
if has_sparse_grad or has_complex: |
|
raise RuntimeError("`fused` does not support sparse grad or complex param") |
|
|
|
if differentiable: |
|
raise RuntimeError( |
|
"adagrad with fused=True does not support differentiable=True" |
|
) |
|
|
|
grad_scale_dict = ( |
|
{grad_scale.device: grad_scale} if grad_scale is not None else None |
|
) |
|
found_inf_dict = {found_inf.device: found_inf} if found_inf is not None else None |
|
|
|
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( |
|
[params, grads, state_sums, state_steps] |
|
) |
|
for (device, _), ( |
|
( |
|
device_params_, |
|
device_grads_, |
|
device_state_sums_, |
|
device_state_steps_, |
|
), |
|
_, |
|
) in grouped_tensors.items(): |
|
device_params = cast(list[Tensor], device_params_) |
|
device_grads = cast(list[Tensor], device_grads_) |
|
device_state_sums = cast(list[Tensor], device_state_sums_) |
|
device_state_steps = cast(list[Tensor], device_state_steps_) |
|
|
|
device_grad_scale, device_found_inf = None, None |
|
if grad_scale is not None and grad_scale_dict is not None: |
|
if device not in grad_scale_dict: |
|
grad_scale_dict[device] = grad_scale.to(device, non_blocking=True) |
|
device_grad_scale = grad_scale_dict[device] |
|
if found_inf is not None and found_inf_dict is not None: |
|
if found_inf not in found_inf_dict: |
|
found_inf_dict[device] = found_inf.to(device, non_blocking=True) |
|
device_found_inf = found_inf_dict[device] |
|
torch._foreach_add_(device_state_steps, 1) |
|
torch._fused_adagrad_( |
|
device_params, |
|
device_grads, |
|
device_state_sums, |
|
device_state_steps, |
|
lr=lr, |
|
lr_decay=lr_decay, |
|
weight_decay=weight_decay, |
|
eps=eps, |
|
maximize=maximize, |
|
grad_scale=device_grad_scale, |
|
found_inf=device_found_inf, |
|
) |
|
if device_found_inf is not None: |
|
torch._foreach_sub_( |
|
device_state_steps, [device_found_inf] * len(device_state_steps) |
|
) |
|
|