|
"""ONNX exporter exceptions.""" |
|
|
|
from __future__ import annotations |
|
|
|
|
|
__all__ = [ |
|
"OnnxExporterWarning", |
|
"SymbolicValueError", |
|
"UnsupportedOperatorError", |
|
] |
|
|
|
import textwrap |
|
from typing import TYPE_CHECKING |
|
|
|
|
|
if TYPE_CHECKING: |
|
from torch import _C |
|
|
|
|
|
class OnnxExporterWarning(UserWarning): |
|
"""Warnings in the ONNX exporter.""" |
|
|
|
|
|
class OnnxExporterError(RuntimeError): |
|
"""Errors raised by the ONNX exporter. This is the base class for all exporter errors.""" |
|
|
|
|
|
class UnsupportedOperatorError(OnnxExporterError): |
|
"""Raised when an operator is unsupported by the exporter.""" |
|
|
|
|
|
|
|
def __init__(self, name: str, version: int, supported_version: int | None): |
|
from torch.onnx import _constants |
|
from torch.onnx._internal import diagnostics |
|
|
|
if supported_version is not None: |
|
diagnostic_rule: diagnostics.infra.Rule = ( |
|
diagnostics.rules.operator_supported_in_newer_opset_version |
|
) |
|
msg = diagnostic_rule.format_message(name, version, supported_version) |
|
diagnostics.diagnose(diagnostic_rule, diagnostics.levels.ERROR, msg) |
|
else: |
|
if name.startswith(("aten::", "prim::", "quantized::")): |
|
diagnostic_rule = diagnostics.rules.missing_standard_symbolic_function |
|
msg = diagnostic_rule.format_message( |
|
name, version, _constants.PYTORCH_GITHUB_ISSUES_URL |
|
) |
|
diagnostics.diagnose(diagnostic_rule, diagnostics.levels.ERROR, msg) |
|
else: |
|
diagnostic_rule = diagnostics.rules.missing_custom_symbolic_function |
|
msg = diagnostic_rule.format_message(name) |
|
diagnostics.diagnose(diagnostic_rule, diagnostics.levels.ERROR, msg) |
|
super().__init__(msg) |
|
|
|
|
|
class SymbolicValueError(OnnxExporterError): |
|
"""Errors around TorchScript values and nodes.""" |
|
|
|
|
|
|
|
def __init__(self, msg: str, value: _C.Value): |
|
message = ( |
|
f"{msg} [Caused by the value '{value}' (type '{value.type()}') in the " |
|
f"TorchScript graph. The containing node has kind '{value.node().kind()}'.] " |
|
) |
|
|
|
code_location = value.node().sourceRange() |
|
if code_location: |
|
message += f"\n (node defined in {code_location})" |
|
|
|
try: |
|
|
|
message += "\n\n" |
|
message += textwrap.indent( |
|
( |
|
"Inputs:\n" |
|
+ ( |
|
"\n".join( |
|
f" #{i}: {input_} (type '{input_.type()}')" |
|
for i, input_ in enumerate(value.node().inputs()) |
|
) |
|
or " Empty" |
|
) |
|
+ "\n" |
|
+ "Outputs:\n" |
|
+ ( |
|
"\n".join( |
|
f" #{i}: {output} (type '{output.type()}')" |
|
for i, output in enumerate(value.node().outputs()) |
|
) |
|
or " Empty" |
|
) |
|
), |
|
" ", |
|
) |
|
except AttributeError: |
|
message += ( |
|
" Failed to obtain its input and output for debugging. " |
|
"Please refer to the TorchScript graph for debugging information." |
|
) |
|
|
|
super().__init__(message) |
|
|