|
|
|
from typing import Optional |
|
|
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from torch.nn.common_types import _ratio_2_t, _ratio_any_t, _size_2_t, _size_any_t |
|
|
|
from .module import Module |
|
|
|
|
|
__all__ = ["Upsample", "UpsamplingNearest2d", "UpsamplingBilinear2d"] |
|
|
|
|
|
class Upsample(Module): |
|
r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data. |
|
|
|
The input data is assumed to be of the form |
|
`minibatch x channels x [optional depth] x [optional height] x width`. |
|
Hence, for spatial inputs, we expect a 4D Tensor and for volumetric inputs, we expect a 5D Tensor. |
|
|
|
The algorithms available for upsampling are nearest neighbor and linear, |
|
bilinear, bicubic and trilinear for 3D, 4D and 5D input Tensor, |
|
respectively. |
|
|
|
One can either give a :attr:`scale_factor` or the target output :attr:`size` to |
|
calculate the output size. (You cannot give both, as it is ambiguous) |
|
|
|
Args: |
|
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int], optional): |
|
output spatial sizes |
|
scale_factor (float or Tuple[float] or Tuple[float, float] or Tuple[float, float, float], optional): |
|
multiplier for spatial size. Has to match input size if it is a tuple. |
|
mode (str, optional): the upsampling algorithm: one of ``'nearest'``, |
|
``'linear'``, ``'bilinear'``, ``'bicubic'`` and ``'trilinear'``. |
|
Default: ``'nearest'`` |
|
align_corners (bool, optional): if ``True``, the corner pixels of the input |
|
and output tensors are aligned, and thus preserving the values at |
|
those pixels. This only has effect when :attr:`mode` is |
|
``'linear'``, ``'bilinear'``, ``'bicubic'``, or ``'trilinear'``. |
|
Default: ``False`` |
|
recompute_scale_factor (bool, optional): recompute the scale_factor for use in the |
|
interpolation calculation. If `recompute_scale_factor` is ``True``, then |
|
`scale_factor` must be passed in and `scale_factor` is used to compute the |
|
output `size`. The computed output `size` will be used to infer new scales for |
|
the interpolation. Note that when `scale_factor` is floating-point, it may differ |
|
from the recomputed `scale_factor` due to rounding and precision issues. |
|
If `recompute_scale_factor` is ``False``, then `size` or `scale_factor` will |
|
be used directly for interpolation. |
|
|
|
Shape: |
|
- Input: :math:`(N, C, W_{in})`, :math:`(N, C, H_{in}, W_{in})` or :math:`(N, C, D_{in}, H_{in}, W_{in})` |
|
- Output: :math:`(N, C, W_{out})`, :math:`(N, C, H_{out}, W_{out})` |
|
or :math:`(N, C, D_{out}, H_{out}, W_{out})`, where |
|
|
|
.. math:: |
|
D_{out} = \left\lfloor D_{in} \times \text{scale\_factor} \right\rfloor |
|
|
|
.. math:: |
|
H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor |
|
|
|
.. math:: |
|
W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor |
|
|
|
.. warning:: |
|
With ``align_corners = True``, the linearly interpolating modes |
|
(`linear`, `bilinear`, `bicubic`, and `trilinear`) don't proportionally |
|
align the output and input pixels, and thus the output values can depend |
|
on the input size. This was the default behavior for these modes up to |
|
version 0.3.1. Since then, the default behavior is |
|
``align_corners = False``. See below for concrete examples on how this |
|
affects the outputs. |
|
|
|
.. note:: |
|
If you want downsampling/general resizing, you should use :func:`~nn.functional.interpolate`. |
|
|
|
Examples:: |
|
|
|
>>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2) |
|
>>> input |
|
tensor([[[[1., 2.], |
|
[3., 4.]]]]) |
|
|
|
>>> m = nn.Upsample(scale_factor=2, mode='nearest') |
|
>>> m(input) |
|
tensor([[[[1., 1., 2., 2.], |
|
[1., 1., 2., 2.], |
|
[3., 3., 4., 4.], |
|
[3., 3., 4., 4.]]]]) |
|
|
|
>>> # xdoctest: +IGNORE_WANT("other tests seem to modify printing styles") |
|
>>> m = nn.Upsample(scale_factor=2, mode='bilinear') # align_corners=False |
|
>>> m(input) |
|
tensor([[[[1.0000, 1.2500, 1.7500, 2.0000], |
|
[1.5000, 1.7500, 2.2500, 2.5000], |
|
[2.5000, 2.7500, 3.2500, 3.5000], |
|
[3.0000, 3.2500, 3.7500, 4.0000]]]]) |
|
|
|
>>> m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) |
|
>>> m(input) |
|
tensor([[[[1.0000, 1.3333, 1.6667, 2.0000], |
|
[1.6667, 2.0000, 2.3333, 2.6667], |
|
[2.3333, 2.6667, 3.0000, 3.3333], |
|
[3.0000, 3.3333, 3.6667, 4.0000]]]]) |
|
|
|
>>> # Try scaling the same data in a larger tensor |
|
>>> input_3x3 = torch.zeros(3, 3).view(1, 1, 3, 3) |
|
>>> input_3x3[:, :, :2, :2].copy_(input) |
|
tensor([[[[1., 2.], |
|
[3., 4.]]]]) |
|
>>> input_3x3 |
|
tensor([[[[1., 2., 0.], |
|
[3., 4., 0.], |
|
[0., 0., 0.]]]]) |
|
|
|
>>> # xdoctest: +IGNORE_WANT("seems to fail when other tests are run in the same session") |
|
>>> m = nn.Upsample(scale_factor=2, mode='bilinear') # align_corners=False |
|
>>> # Notice that values in top left corner are the same with the small input (except at boundary) |
|
>>> m(input_3x3) |
|
tensor([[[[1.0000, 1.2500, 1.7500, 1.5000, 0.5000, 0.0000], |
|
[1.5000, 1.7500, 2.2500, 1.8750, 0.6250, 0.0000], |
|
[2.5000, 2.7500, 3.2500, 2.6250, 0.8750, 0.0000], |
|
[2.2500, 2.4375, 2.8125, 2.2500, 0.7500, 0.0000], |
|
[0.7500, 0.8125, 0.9375, 0.7500, 0.2500, 0.0000], |
|
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]]) |
|
|
|
>>> m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) |
|
>>> # Notice that values in top left corner are now changed |
|
>>> m(input_3x3) |
|
tensor([[[[1.0000, 1.4000, 1.8000, 1.6000, 0.8000, 0.0000], |
|
[1.8000, 2.2000, 2.6000, 2.2400, 1.1200, 0.0000], |
|
[2.6000, 3.0000, 3.4000, 2.8800, 1.4400, 0.0000], |
|
[2.4000, 2.7200, 3.0400, 2.5600, 1.2800, 0.0000], |
|
[1.2000, 1.3600, 1.5200, 1.2800, 0.6400, 0.0000], |
|
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]]) |
|
""" |
|
|
|
__constants__ = [ |
|
"size", |
|
"scale_factor", |
|
"mode", |
|
"align_corners", |
|
"name", |
|
"recompute_scale_factor", |
|
] |
|
name: str |
|
size: Optional[_size_any_t] |
|
scale_factor: Optional[_ratio_any_t] |
|
mode: str |
|
align_corners: Optional[bool] |
|
recompute_scale_factor: Optional[bool] |
|
|
|
def __init__( |
|
self, |
|
size: Optional[_size_any_t] = None, |
|
scale_factor: Optional[_ratio_any_t] = None, |
|
mode: str = "nearest", |
|
align_corners: Optional[bool] = None, |
|
recompute_scale_factor: Optional[bool] = None, |
|
) -> None: |
|
super().__init__() |
|
self.name = type(self).__name__ |
|
self.size = size |
|
if isinstance(scale_factor, tuple): |
|
self.scale_factor = tuple(float(factor) for factor in scale_factor) |
|
else: |
|
self.scale_factor = float(scale_factor) if scale_factor else None |
|
self.mode = mode |
|
self.align_corners = align_corners |
|
self.recompute_scale_factor = recompute_scale_factor |
|
|
|
def forward(self, input: Tensor) -> Tensor: |
|
return F.interpolate( |
|
input, |
|
self.size, |
|
self.scale_factor, |
|
self.mode, |
|
self.align_corners, |
|
recompute_scale_factor=self.recompute_scale_factor, |
|
) |
|
|
|
def __setstate__(self, state): |
|
if "recompute_scale_factor" not in state: |
|
state["recompute_scale_factor"] = True |
|
|
|
super().__setstate__(state) |
|
|
|
def extra_repr(self) -> str: |
|
if self.scale_factor is not None: |
|
info = "scale_factor=" + repr(self.scale_factor) |
|
else: |
|
info = "size=" + repr(self.size) |
|
info += ", mode=" + repr(self.mode) |
|
return info |
|
|
|
|
|
class UpsamplingNearest2d(Upsample): |
|
r"""Applies a 2D nearest neighbor upsampling to an input signal composed of several input channels. |
|
|
|
To specify the scale, it takes either the :attr:`size` or the :attr:`scale_factor` |
|
as it's constructor argument. |
|
|
|
When :attr:`size` is given, it is the output size of the image `(h, w)`. |
|
|
|
Args: |
|
size (int or Tuple[int, int], optional): output spatial sizes |
|
scale_factor (float or Tuple[float, float], optional): multiplier for |
|
spatial size. |
|
|
|
.. warning:: |
|
This class is deprecated in favor of :func:`~nn.functional.interpolate`. |
|
|
|
Shape: |
|
- Input: :math:`(N, C, H_{in}, W_{in})` |
|
- Output: :math:`(N, C, H_{out}, W_{out})` where |
|
|
|
.. math:: |
|
H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor |
|
|
|
.. math:: |
|
W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor |
|
|
|
Examples:: |
|
|
|
>>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2) |
|
>>> input |
|
tensor([[[[1., 2.], |
|
[3., 4.]]]]) |
|
|
|
>>> m = nn.UpsamplingNearest2d(scale_factor=2) |
|
>>> m(input) |
|
tensor([[[[1., 1., 2., 2.], |
|
[1., 1., 2., 2.], |
|
[3., 3., 4., 4.], |
|
[3., 3., 4., 4.]]]]) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size: Optional[_size_2_t] = None, |
|
scale_factor: Optional[_ratio_2_t] = None, |
|
) -> None: |
|
super().__init__(size, scale_factor, mode="nearest") |
|
|
|
|
|
class UpsamplingBilinear2d(Upsample): |
|
r"""Applies a 2D bilinear upsampling to an input signal composed of several input channels. |
|
|
|
To specify the scale, it takes either the :attr:`size` or the :attr:`scale_factor` |
|
as it's constructor argument. |
|
|
|
When :attr:`size` is given, it is the output size of the image `(h, w)`. |
|
|
|
Args: |
|
size (int or Tuple[int, int], optional): output spatial sizes |
|
scale_factor (float or Tuple[float, float], optional): multiplier for |
|
spatial size. |
|
|
|
.. warning:: |
|
This class is deprecated in favor of :func:`~nn.functional.interpolate`. It is |
|
equivalent to ``nn.functional.interpolate(..., mode='bilinear', align_corners=True)``. |
|
|
|
Shape: |
|
- Input: :math:`(N, C, H_{in}, W_{in})` |
|
- Output: :math:`(N, C, H_{out}, W_{out})` where |
|
|
|
.. math:: |
|
H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor |
|
|
|
.. math:: |
|
W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor |
|
|
|
Examples:: |
|
|
|
>>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2) |
|
>>> input |
|
tensor([[[[1., 2.], |
|
[3., 4.]]]]) |
|
|
|
>>> # xdoctest: +IGNORE_WANT("do other tests modify the global state?") |
|
>>> m = nn.UpsamplingBilinear2d(scale_factor=2) |
|
>>> m(input) |
|
tensor([[[[1.0000, 1.3333, 1.6667, 2.0000], |
|
[1.6667, 2.0000, 2.3333, 2.6667], |
|
[2.3333, 2.6667, 3.0000, 3.3333], |
|
[3.0000, 3.3333, 3.6667, 4.0000]]]]) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size: Optional[_size_2_t] = None, |
|
scale_factor: Optional[_ratio_2_t] = None, |
|
) -> None: |
|
super().__init__(size, scale_factor, mode="bilinear", align_corners=True) |
|
|