|
import torch.nn.functional as F |
|
from torch import Tensor |
|
|
|
from .module import Module |
|
|
|
|
|
__all__ = ["PairwiseDistance", "CosineSimilarity"] |
|
|
|
|
|
class PairwiseDistance(Module): |
|
r""" |
|
Computes the pairwise distance between input vectors, or between columns of input matrices. |
|
|
|
Distances are computed using ``p``-norm, with constant ``eps`` added to avoid division by zero |
|
if ``p`` is negative, i.e.: |
|
|
|
.. math :: |
|
\mathrm{dist}\left(x, y\right) = \left\Vert x-y + \epsilon e \right\Vert_p, |
|
|
|
where :math:`e` is the vector of ones and the ``p``-norm is given by. |
|
|
|
.. math :: |
|
\Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}. |
|
|
|
Args: |
|
p (real, optional): the norm degree. Can be negative. Default: 2 |
|
eps (float, optional): Small value to avoid division by zero. |
|
Default: 1e-6 |
|
keepdim (bool, optional): Determines whether or not to keep the vector dimension. |
|
Default: False |
|
Shape: |
|
- Input1: :math:`(N, D)` or :math:`(D)` where `N = batch dimension` and `D = vector dimension` |
|
- Input2: :math:`(N, D)` or :math:`(D)`, same shape as the Input1 |
|
- Output: :math:`(N)` or :math:`()` based on input dimension. |
|
If :attr:`keepdim` is ``True``, then :math:`(N, 1)` or :math:`(1)` based on input dimension. |
|
|
|
Examples:: |
|
>>> pdist = nn.PairwiseDistance(p=2) |
|
>>> input1 = torch.randn(100, 128) |
|
>>> input2 = torch.randn(100, 128) |
|
>>> output = pdist(input1, input2) |
|
""" |
|
|
|
__constants__ = ["norm", "eps", "keepdim"] |
|
norm: float |
|
eps: float |
|
keepdim: bool |
|
|
|
def __init__( |
|
self, p: float = 2.0, eps: float = 1e-6, keepdim: bool = False |
|
) -> None: |
|
super().__init__() |
|
self.norm = p |
|
self.eps = eps |
|
self.keepdim = keepdim |
|
|
|
def forward(self, x1: Tensor, x2: Tensor) -> Tensor: |
|
return F.pairwise_distance(x1, x2, self.norm, self.eps, self.keepdim) |
|
|
|
|
|
class CosineSimilarity(Module): |
|
r"""Returns cosine similarity between :math:`x_1` and :math:`x_2`, computed along `dim`. |
|
|
|
.. math :: |
|
\text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}. |
|
|
|
Args: |
|
dim (int, optional): Dimension where cosine similarity is computed. Default: 1 |
|
eps (float, optional): Small value to avoid division by zero. |
|
Default: 1e-8 |
|
Shape: |
|
- Input1: :math:`(\ast_1, D, \ast_2)` where D is at position `dim` |
|
- Input2: :math:`(\ast_1, D, \ast_2)`, same number of dimensions as x1, matching x1 size at dimension `dim`, |
|
and broadcastable with x1 at other dimensions. |
|
- Output: :math:`(\ast_1, \ast_2)` |
|
Examples:: |
|
>>> input1 = torch.randn(100, 128) |
|
>>> input2 = torch.randn(100, 128) |
|
>>> cos = nn.CosineSimilarity(dim=1, eps=1e-6) |
|
>>> output = cos(input1, input2) |
|
""" |
|
|
|
__constants__ = ["dim", "eps"] |
|
dim: int |
|
eps: float |
|
|
|
def __init__(self, dim: int = 1, eps: float = 1e-8) -> None: |
|
super().__init__() |
|
self.dim = dim |
|
self.eps = eps |
|
|
|
def forward(self, x1: Tensor, x2: Tensor) -> Tensor: |
|
return F.cosine_similarity(x1, x2, self.dim, self.eps) |
|
|