|
|
|
import torch |
|
from torch import Tensor |
|
|
|
|
|
aten = torch.ops.aten |
|
import inspect |
|
import warnings |
|
from typing import Callable, Optional, TypeVar |
|
from typing_extensions import ParamSpec |
|
|
|
from torch.types import Number |
|
|
|
|
|
decomposition_table: dict[str, torch.jit.ScriptFunction] = {} |
|
function_name_set: set[str] = set() |
|
|
|
_T = TypeVar("_T") |
|
_P = ParamSpec("_P") |
|
|
|
|
|
def check_decomposition_has_type_annotations(f): |
|
inspect_empty = inspect._empty |
|
sig = inspect.signature(f) |
|
for param in sig.parameters.values(): |
|
assert ( |
|
param.annotation != inspect_empty |
|
), f"No signature on param {param.name} for function {f.name}" |
|
|
|
assert ( |
|
sig.return_annotation != inspect_empty |
|
), f"No return annotation for function {f.name}" |
|
|
|
|
|
def signatures_match(decomposition_sig, torch_op_sig): |
|
decomp_params = decomposition_sig.parameters |
|
op_params = torch_op_sig.parameters |
|
|
|
if len(decomp_params) != len(op_params): |
|
return False |
|
|
|
for decomp_param, op_param in zip(decomp_params.values(), op_params.values()): |
|
|
|
|
|
|
|
|
|
inspect_empty = inspect._empty |
|
for field in ["name", "annotation"]: |
|
if field == "name" and decomp_param.name == "self": |
|
warnings.warn("PyTorch uses 'input' instead of 'self' on public api") |
|
|
|
if getattr(decomp_param, field) != getattr(op_param, field): |
|
return False |
|
|
|
decomp_default = decomp_param.default |
|
op_default = op_param.default |
|
|
|
|
|
if decomp_default != inspect_empty and op_default != inspect_empty: |
|
if decomp_default != op_default: |
|
return False |
|
|
|
return decomposition_sig.return_annotation == torch_op_sig.return_annotation |
|
|
|
|
|
def register_decomposition( |
|
aten_op: torch._ops.OpOverload, |
|
registry: Optional[dict[str, torch.jit.ScriptFunction]] = None, |
|
) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]: |
|
def decomposition_decorator(f: Callable[_P, _T]) -> Callable[_P, _T]: |
|
nonlocal registry |
|
if registry is None: |
|
registry = decomposition_table |
|
|
|
assert isinstance(aten_op, torch._ops.OpOverload) |
|
|
|
|
|
assert ( |
|
f.__name__ not in function_name_set |
|
), f"Duplicated function name {f.__name__}" |
|
function_name_set.add(f.__name__) |
|
|
|
scripted_func = torch.jit.script(f) |
|
torch._C._jit_pass_inline(scripted_func.graph) |
|
|
|
for _ in range(2): |
|
torch._C._jit_pass_peephole(scripted_func.graph) |
|
torch._C._jit_pass_constant_propagation(scripted_func.graph) |
|
|
|
registry[str(aten_op._schema)] = scripted_func |
|
return f |
|
|
|
return decomposition_decorator |
|
|
|
|
|
|
|
|
|
|
|
@register_decomposition(aten.var.correction) |
|
def var_decomposition( |
|
input: Tensor, |
|
dim: Optional[list[int]] = None, |
|
correction: Optional[Number] = None, |
|
keepdim: bool = False, |
|
) -> Tensor: |
|
if dim is None: |
|
dim_i: list[int] = [] |
|
dim = dim_i |
|
|
|
if isinstance(dim, (tuple, list)) and len(dim) == 0: |
|
n = input.numel() |
|
else: |
|
n = 1 |
|
for dim_i in dim: |
|
n *= input.shape[dim_i] |
|
|
|
mean = aten.mean(input, dim, True) |
|
sub = input - mean |
|
sq = sub * sub |
|
sum = aten.sum(sq, dim, keepdim) |
|
|
|
if correction is None: |
|
denom = float(n - 1) |
|
else: |
|
if isinstance(correction, int): |
|
denom = float(n - correction) |
|
elif isinstance(correction, float): |
|
denom = float(n) - correction |
|
else: |
|
raise RuntimeError("correction must be int or float") |
|
|
|
return sum / max(0, denom) |
|
|
|
|
|
@register_decomposition(aten.var.default) |
|
def var(input: Tensor, unbiased: bool = True) -> Tensor: |
|
return var_decomposition(input, correction=(1 if unbiased else 0)) |
|
|