|
|
|
"""Async API. |
|
|
|
This module contains the API for parallelism in TorchScript, notably: |
|
* torch.jit.fork |
|
* torch.jit.wait |
|
|
|
This is not intended to be imported directly; please use the exposed |
|
functionalities in `torch.jit`. |
|
""" |
|
|
|
import torch |
|
from torch._jit_internal import Future |
|
from torch.jit._builtins import _register_builtin |
|
from torch.utils import set_module |
|
|
|
|
|
set_module(Future, "torch.jit") |
|
|
|
|
|
def fork(func, *args, **kwargs): |
|
r""" |
|
Create an asynchronous task executing `func` and a reference to the value of the result of this execution. |
|
|
|
`fork` will return immediately, so the return value of `func` may not have been computed yet. To force completion |
|
of the task and access the return value invoke `torch.jit.wait` on the Future. `fork` invoked |
|
with a `func` which returns `T` is typed as `torch.jit.Future[T]`. `fork` calls can be arbitrarily |
|
nested, and may be invoked with positional and keyword arguments. |
|
Asynchronous execution will only occur when run in TorchScript. If run in pure python, |
|
`fork` will not execute in parallel. `fork` will also not execute in parallel when invoked |
|
while tracing, however the `fork` and `wait` calls will be captured in the exported IR Graph. |
|
|
|
.. warning:: |
|
`fork` tasks will execute non-deterministically. We recommend only spawning |
|
parallel fork tasks for pure functions that do not modify their inputs, |
|
module attributes, or global state. |
|
|
|
Args: |
|
func (callable or torch.nn.Module): A Python function or `torch.nn.Module` |
|
that will be invoked. If executed in TorchScript, it will execute asynchronously, |
|
otherwise it will not. Traced invocations of fork will be captured in the IR. |
|
``*args``, ``**kwargs``: arguments to invoke `func` with. |
|
Returns: |
|
`torch.jit.Future[T]`: a reference to the execution of `func`. The value `T` |
|
can only be accessed by forcing completion of `func` through `torch.jit.wait`. |
|
|
|
Example (fork a free function): |
|
|
|
.. code-block:: python |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
|
|
def foo(a: Tensor, b: int) -> Tensor: |
|
return a + b |
|
|
|
|
|
def bar(a): |
|
fut: torch.jit.Future[Tensor] = torch.jit.fork(foo, a, b=2) |
|
return torch.jit.wait(fut) |
|
|
|
|
|
script_bar = torch.jit.script(bar) |
|
input = torch.tensor(2) |
|
# only the scripted version executes asynchronously |
|
assert script_bar(input) == bar(input) |
|
# trace is not run asynchronously, but fork is captured in IR |
|
graph = torch.jit.trace(bar, (input,)).graph |
|
assert "fork" in str(graph) |
|
|
|
Example (fork a module method): |
|
|
|
.. code-block:: python |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
|
|
class AddMod(torch.nn.Module): |
|
def forward(self, a: Tensor, b: int): |
|
return a + b |
|
|
|
|
|
class Mod(torch.nn.Module): |
|
def __init__(self) -> None: |
|
super(self).__init__() |
|
self.mod = AddMod() |
|
|
|
def forward(self, input): |
|
fut = torch.jit.fork(self.mod, a, b=2) |
|
return torch.jit.wait(fut) |
|
|
|
|
|
input = torch.tensor(2) |
|
mod = Mod() |
|
assert mod(input) == torch.jit.script(mod).forward(input) |
|
""" |
|
return torch._C.fork(func, *args, **kwargs) |
|
|
|
|
|
def wait(future): |
|
r""" |
|
Force completion of a `torch.jit.Future[T]` asynchronous task, returning the result of the task. |
|
|
|
See :func:`~fork` for docs and examples. |
|
Args: |
|
future (torch.jit.Future[T]): an asynchronous task reference, created through `torch.jit.fork` |
|
Returns: |
|
`T`: the return value of the completed task |
|
""" |
|
return torch._C.wait(future) |
|
|
|
|
|
_register_builtin(wait, "aten::wait") |
|
|