|
|
|
import torch |
|
from torch import Tensor |
|
from torch.distributions import constraints |
|
from torch.distributions.exponential import Exponential |
|
from torch.distributions.gumbel import euler_constant |
|
from torch.distributions.transformed_distribution import TransformedDistribution |
|
from torch.distributions.transforms import AffineTransform, PowerTransform |
|
from torch.distributions.utils import broadcast_all |
|
|
|
|
|
__all__ = ["Weibull"] |
|
|
|
|
|
class Weibull(TransformedDistribution): |
|
r""" |
|
Samples from a two-parameter Weibull distribution. |
|
|
|
Example: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> m = Weibull(torch.tensor([1.0]), torch.tensor([1.0])) |
|
>>> m.sample() # sample from a Weibull distribution with scale=1, concentration=1 |
|
tensor([ 0.4784]) |
|
|
|
Args: |
|
scale (float or Tensor): Scale parameter of distribution (lambda). |
|
concentration (float or Tensor): Concentration parameter of distribution (k/shape). |
|
""" |
|
|
|
arg_constraints = { |
|
"scale": constraints.positive, |
|
"concentration": constraints.positive, |
|
} |
|
support = constraints.positive |
|
|
|
def __init__(self, scale, concentration, validate_args=None): |
|
self.scale, self.concentration = broadcast_all(scale, concentration) |
|
self.concentration_reciprocal = self.concentration.reciprocal() |
|
base_dist = Exponential( |
|
torch.ones_like(self.scale), validate_args=validate_args |
|
) |
|
transforms = [ |
|
PowerTransform(exponent=self.concentration_reciprocal), |
|
AffineTransform(loc=0, scale=self.scale), |
|
] |
|
super().__init__(base_dist, transforms, validate_args=validate_args) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(Weibull, _instance) |
|
new.scale = self.scale.expand(batch_shape) |
|
new.concentration = self.concentration.expand(batch_shape) |
|
new.concentration_reciprocal = new.concentration.reciprocal() |
|
base_dist = self.base_dist.expand(batch_shape) |
|
transforms = [ |
|
PowerTransform(exponent=new.concentration_reciprocal), |
|
AffineTransform(loc=0, scale=new.scale), |
|
] |
|
super(Weibull, new).__init__(base_dist, transforms, validate_args=False) |
|
new._validate_args = self._validate_args |
|
return new |
|
|
|
@property |
|
def mean(self) -> Tensor: |
|
return self.scale * torch.exp(torch.lgamma(1 + self.concentration_reciprocal)) |
|
|
|
@property |
|
def mode(self) -> Tensor: |
|
return ( |
|
self.scale |
|
* ((self.concentration - 1) / self.concentration) |
|
** self.concentration.reciprocal() |
|
) |
|
|
|
@property |
|
def variance(self) -> Tensor: |
|
return self.scale.pow(2) * ( |
|
torch.exp(torch.lgamma(1 + 2 * self.concentration_reciprocal)) |
|
- torch.exp(2 * torch.lgamma(1 + self.concentration_reciprocal)) |
|
) |
|
|
|
def entropy(self): |
|
return ( |
|
euler_constant * (1 - self.concentration_reciprocal) |
|
+ torch.log(self.scale * self.concentration_reciprocal) |
|
+ 1 |
|
) |
|
|