|
|
|
import math |
|
|
|
import torch |
|
import torch.jit |
|
from torch import Tensor |
|
from torch.distributions import constraints |
|
from torch.distributions.distribution import Distribution |
|
from torch.distributions.utils import broadcast_all, lazy_property |
|
|
|
|
|
__all__ = ["VonMises"] |
|
|
|
|
|
def _eval_poly(y, coef): |
|
coef = list(coef) |
|
result = coef.pop() |
|
while coef: |
|
result = coef.pop() + y * result |
|
return result |
|
|
|
|
|
_I0_COEF_SMALL = [ |
|
1.0, |
|
3.5156229, |
|
3.0899424, |
|
1.2067492, |
|
0.2659732, |
|
0.360768e-1, |
|
0.45813e-2, |
|
] |
|
_I0_COEF_LARGE = [ |
|
0.39894228, |
|
0.1328592e-1, |
|
0.225319e-2, |
|
-0.157565e-2, |
|
0.916281e-2, |
|
-0.2057706e-1, |
|
0.2635537e-1, |
|
-0.1647633e-1, |
|
0.392377e-2, |
|
] |
|
_I1_COEF_SMALL = [ |
|
0.5, |
|
0.87890594, |
|
0.51498869, |
|
0.15084934, |
|
0.2658733e-1, |
|
0.301532e-2, |
|
0.32411e-3, |
|
] |
|
_I1_COEF_LARGE = [ |
|
0.39894228, |
|
-0.3988024e-1, |
|
-0.362018e-2, |
|
0.163801e-2, |
|
-0.1031555e-1, |
|
0.2282967e-1, |
|
-0.2895312e-1, |
|
0.1787654e-1, |
|
-0.420059e-2, |
|
] |
|
|
|
_COEF_SMALL = [_I0_COEF_SMALL, _I1_COEF_SMALL] |
|
_COEF_LARGE = [_I0_COEF_LARGE, _I1_COEF_LARGE] |
|
|
|
|
|
def _log_modified_bessel_fn(x, order=0): |
|
""" |
|
Returns ``log(I_order(x))`` for ``x > 0``, |
|
where `order` is either 0 or 1. |
|
""" |
|
assert order == 0 or order == 1 |
|
|
|
|
|
y = x / 3.75 |
|
y = y * y |
|
small = _eval_poly(y, _COEF_SMALL[order]) |
|
if order == 1: |
|
small = x.abs() * small |
|
small = small.log() |
|
|
|
|
|
y = 3.75 / x |
|
large = x - 0.5 * x.log() + _eval_poly(y, _COEF_LARGE[order]).log() |
|
|
|
result = torch.where(x < 3.75, small, large) |
|
return result |
|
|
|
|
|
@torch.jit.script_if_tracing |
|
def _rejection_sample(loc, concentration, proposal_r, x): |
|
done = torch.zeros(x.shape, dtype=torch.bool, device=loc.device) |
|
while not done.all(): |
|
u = torch.rand((3,) + x.shape, dtype=loc.dtype, device=loc.device) |
|
u1, u2, u3 = u.unbind() |
|
z = torch.cos(math.pi * u1) |
|
f = (1 + proposal_r * z) / (proposal_r + z) |
|
c = concentration * (proposal_r - f) |
|
accept = ((c * (2 - c) - u2) > 0) | ((c / u2).log() + 1 - c >= 0) |
|
if accept.any(): |
|
x = torch.where(accept, (u3 - 0.5).sign() * f.acos(), x) |
|
done = done | accept |
|
return (x + math.pi + loc) % (2 * math.pi) - math.pi |
|
|
|
|
|
class VonMises(Distribution): |
|
""" |
|
A circular von Mises distribution. |
|
|
|
This implementation uses polar coordinates. The ``loc`` and ``value`` args |
|
can be any real number (to facilitate unconstrained optimization), but are |
|
interpreted as angles modulo 2 pi. |
|
|
|
Example:: |
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> m = VonMises(torch.tensor([1.0]), torch.tensor([1.0])) |
|
>>> m.sample() # von Mises distributed with loc=1 and concentration=1 |
|
tensor([1.9777]) |
|
|
|
:param torch.Tensor loc: an angle in radians. |
|
:param torch.Tensor concentration: concentration parameter |
|
""" |
|
|
|
arg_constraints = {"loc": constraints.real, "concentration": constraints.positive} |
|
support = constraints.real |
|
has_rsample = False |
|
|
|
def __init__(self, loc, concentration, validate_args=None): |
|
self.loc, self.concentration = broadcast_all(loc, concentration) |
|
batch_shape = self.loc.shape |
|
event_shape = torch.Size() |
|
super().__init__(batch_shape, event_shape, validate_args) |
|
|
|
def log_prob(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
log_prob = self.concentration * torch.cos(value - self.loc) |
|
log_prob = ( |
|
log_prob |
|
- math.log(2 * math.pi) |
|
- _log_modified_bessel_fn(self.concentration, order=0) |
|
) |
|
return log_prob |
|
|
|
@lazy_property |
|
def _loc(self) -> Tensor: |
|
return self.loc.to(torch.double) |
|
|
|
@lazy_property |
|
def _concentration(self) -> Tensor: |
|
return self.concentration.to(torch.double) |
|
|
|
@lazy_property |
|
def _proposal_r(self) -> Tensor: |
|
kappa = self._concentration |
|
tau = 1 + (1 + 4 * kappa**2).sqrt() |
|
rho = (tau - (2 * tau).sqrt()) / (2 * kappa) |
|
_proposal_r = (1 + rho**2) / (2 * rho) |
|
|
|
_proposal_r_taylor = 1 / kappa + kappa |
|
return torch.where(kappa < 1e-5, _proposal_r_taylor, _proposal_r) |
|
|
|
@torch.no_grad() |
|
def sample(self, sample_shape=torch.Size()): |
|
""" |
|
The sampling algorithm for the von Mises distribution is based on the |
|
following paper: D.J. Best and N.I. Fisher, "Efficient simulation of the |
|
von Mises distribution." Applied Statistics (1979): 152-157. |
|
|
|
Sampling is always done in double precision internally to avoid a hang |
|
in _rejection_sample() for small values of the concentration, which |
|
starts to happen for single precision around 1e-4 (see issue #88443). |
|
""" |
|
shape = self._extended_shape(sample_shape) |
|
x = torch.empty(shape, dtype=self._loc.dtype, device=self.loc.device) |
|
return _rejection_sample( |
|
self._loc, self._concentration, self._proposal_r, x |
|
).to(self.loc.dtype) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
try: |
|
return super().expand(batch_shape) |
|
except NotImplementedError: |
|
validate_args = self.__dict__.get("_validate_args") |
|
loc = self.loc.expand(batch_shape) |
|
concentration = self.concentration.expand(batch_shape) |
|
return type(self)(loc, concentration, validate_args=validate_args) |
|
|
|
@property |
|
def mean(self) -> Tensor: |
|
""" |
|
The provided mean is the circular one. |
|
""" |
|
return self.loc |
|
|
|
@property |
|
def mode(self) -> Tensor: |
|
return self.loc |
|
|
|
@lazy_property |
|
def variance(self) -> Tensor: |
|
""" |
|
The provided variance is the circular one. |
|
""" |
|
return ( |
|
1 |
|
- ( |
|
_log_modified_bessel_fn(self.concentration, order=1) |
|
- _log_modified_bessel_fn(self.concentration, order=0) |
|
).exp() |
|
) |
|
|