|
from typing import Optional |
|
|
|
from torch import Tensor |
|
from torch.distributions import constraints |
|
from torch.distributions.exponential import Exponential |
|
from torch.distributions.transformed_distribution import TransformedDistribution |
|
from torch.distributions.transforms import AffineTransform, ExpTransform |
|
from torch.distributions.utils import broadcast_all |
|
from torch.types import _size |
|
|
|
|
|
__all__ = ["Pareto"] |
|
|
|
|
|
class Pareto(TransformedDistribution): |
|
r""" |
|
Samples from a Pareto Type 1 distribution. |
|
|
|
Example:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> m = Pareto(torch.tensor([1.0]), torch.tensor([1.0])) |
|
>>> m.sample() # sample from a Pareto distribution with scale=1 and alpha=1 |
|
tensor([ 1.5623]) |
|
|
|
Args: |
|
scale (float or Tensor): Scale parameter of the distribution |
|
alpha (float or Tensor): Shape parameter of the distribution |
|
""" |
|
|
|
arg_constraints = {"alpha": constraints.positive, "scale": constraints.positive} |
|
|
|
def __init__( |
|
self, scale: Tensor, alpha: Tensor, validate_args: Optional[bool] = None |
|
) -> None: |
|
self.scale, self.alpha = broadcast_all(scale, alpha) |
|
base_dist = Exponential(self.alpha, validate_args=validate_args) |
|
transforms = [ExpTransform(), AffineTransform(loc=0, scale=self.scale)] |
|
super().__init__(base_dist, transforms, validate_args=validate_args) |
|
|
|
def expand( |
|
self, batch_shape: _size, _instance: Optional["Pareto"] = None |
|
) -> "Pareto": |
|
new = self._get_checked_instance(Pareto, _instance) |
|
new.scale = self.scale.expand(batch_shape) |
|
new.alpha = self.alpha.expand(batch_shape) |
|
return super().expand(batch_shape, _instance=new) |
|
|
|
@property |
|
def mean(self) -> Tensor: |
|
|
|
a = self.alpha.clamp(min=1) |
|
return a * self.scale / (a - 1) |
|
|
|
@property |
|
def mode(self) -> Tensor: |
|
return self.scale |
|
|
|
@property |
|
def variance(self) -> Tensor: |
|
|
|
a = self.alpha.clamp(min=2) |
|
return self.scale.pow(2) * a / ((a - 1).pow(2) * (a - 2)) |
|
|
|
@constraints.dependent_property(is_discrete=False, event_dim=0) |
|
def support(self) -> constraints.Constraint: |
|
return constraints.greater_than_eq(self.scale) |
|
|
|
def entropy(self) -> Tensor: |
|
return (self.scale / self.alpha).log() + (1 + self.alpha.reciprocal()) |
|
|