|
|
|
import torch |
|
from torch import inf, Tensor |
|
from torch.distributions import Categorical, constraints |
|
from torch.distributions.binomial import Binomial |
|
from torch.distributions.distribution import Distribution |
|
from torch.distributions.utils import broadcast_all |
|
|
|
|
|
__all__ = ["Multinomial"] |
|
|
|
|
|
class Multinomial(Distribution): |
|
r""" |
|
Creates a Multinomial distribution parameterized by :attr:`total_count` and |
|
either :attr:`probs` or :attr:`logits` (but not both). The innermost dimension of |
|
:attr:`probs` indexes over categories. All other dimensions index over batches. |
|
|
|
Note that :attr:`total_count` need not be specified if only :meth:`log_prob` is |
|
called (see example below) |
|
|
|
.. note:: The `probs` argument must be non-negative, finite and have a non-zero sum, |
|
and it will be normalized to sum to 1 along the last dimension. :attr:`probs` |
|
will return this normalized value. |
|
The `logits` argument will be interpreted as unnormalized log probabilities |
|
and can therefore be any real number. It will likewise be normalized so that |
|
the resulting probabilities sum to 1 along the last dimension. :attr:`logits` |
|
will return this normalized value. |
|
|
|
- :meth:`sample` requires a single shared `total_count` for all |
|
parameters and samples. |
|
- :meth:`log_prob` allows different `total_count` for each parameter and |
|
sample. |
|
|
|
Example:: |
|
|
|
>>> # xdoctest: +SKIP("FIXME: found invalid values") |
|
>>> m = Multinomial(100, torch.tensor([ 1., 1., 1., 1.])) |
|
>>> x = m.sample() # equal probability of 0, 1, 2, 3 |
|
tensor([ 21., 24., 30., 25.]) |
|
|
|
>>> Multinomial(probs=torch.tensor([1., 1., 1., 1.])).log_prob(x) |
|
tensor([-4.1338]) |
|
|
|
Args: |
|
total_count (int): number of trials |
|
probs (Tensor): event probabilities |
|
logits (Tensor): event log probabilities (unnormalized) |
|
""" |
|
|
|
arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector} |
|
total_count: int |
|
|
|
@property |
|
def mean(self) -> Tensor: |
|
return self.probs * self.total_count |
|
|
|
@property |
|
def variance(self) -> Tensor: |
|
return self.total_count * self.probs * (1 - self.probs) |
|
|
|
def __init__(self, total_count=1, probs=None, logits=None, validate_args=None): |
|
if not isinstance(total_count, int): |
|
raise NotImplementedError("inhomogeneous total_count is not supported") |
|
self.total_count = total_count |
|
self._categorical = Categorical(probs=probs, logits=logits) |
|
self._binomial = Binomial(total_count=total_count, probs=self.probs) |
|
batch_shape = self._categorical.batch_shape |
|
event_shape = self._categorical.param_shape[-1:] |
|
super().__init__(batch_shape, event_shape, validate_args=validate_args) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(Multinomial, _instance) |
|
batch_shape = torch.Size(batch_shape) |
|
new.total_count = self.total_count |
|
new._categorical = self._categorical.expand(batch_shape) |
|
super(Multinomial, new).__init__( |
|
batch_shape, self.event_shape, validate_args=False |
|
) |
|
new._validate_args = self._validate_args |
|
return new |
|
|
|
def _new(self, *args, **kwargs): |
|
return self._categorical._new(*args, **kwargs) |
|
|
|
@constraints.dependent_property(is_discrete=True, event_dim=1) |
|
def support(self): |
|
return constraints.multinomial(self.total_count) |
|
|
|
@property |
|
def logits(self) -> Tensor: |
|
return self._categorical.logits |
|
|
|
@property |
|
def probs(self) -> Tensor: |
|
return self._categorical.probs |
|
|
|
@property |
|
def param_shape(self) -> torch.Size: |
|
return self._categorical.param_shape |
|
|
|
def sample(self, sample_shape=torch.Size()): |
|
sample_shape = torch.Size(sample_shape) |
|
samples = self._categorical.sample( |
|
torch.Size((self.total_count,)) + sample_shape |
|
) |
|
|
|
|
|
shifted_idx = list(range(samples.dim())) |
|
shifted_idx.append(shifted_idx.pop(0)) |
|
samples = samples.permute(*shifted_idx) |
|
counts = samples.new(self._extended_shape(sample_shape)).zero_() |
|
counts.scatter_add_(-1, samples, torch.ones_like(samples)) |
|
return counts.type_as(self.probs) |
|
|
|
def entropy(self): |
|
n = torch.tensor(self.total_count) |
|
|
|
cat_entropy = self._categorical.entropy() |
|
term1 = n * cat_entropy - torch.lgamma(n + 1) |
|
|
|
support = self._binomial.enumerate_support(expand=False)[1:] |
|
binomial_probs = torch.exp(self._binomial.log_prob(support)) |
|
weights = torch.lgamma(support + 1) |
|
term2 = (binomial_probs * weights).sum([0, -1]) |
|
|
|
return term1 + term2 |
|
|
|
def log_prob(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
logits, value = broadcast_all(self.logits, value) |
|
logits = logits.clone(memory_format=torch.contiguous_format) |
|
log_factorial_n = torch.lgamma(value.sum(-1) + 1) |
|
log_factorial_xs = torch.lgamma(value + 1).sum(-1) |
|
logits[(value == 0) & (logits == -inf)] = 0 |
|
log_powers = (logits * value).sum(-1) |
|
return log_factorial_n - log_factorial_xs + log_powers |
|
|