|
|
|
import torch |
|
from torch import Tensor |
|
from torch.distributions import constraints |
|
from torch.distributions.distribution import Distribution |
|
from torch.distributions.utils import broadcast_all |
|
from torch.types import _Number, _size |
|
|
|
|
|
__all__ = ["Laplace"] |
|
|
|
|
|
class Laplace(Distribution): |
|
r""" |
|
Creates a Laplace distribution parameterized by :attr:`loc` and :attr:`scale`. |
|
|
|
Example:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> m = Laplace(torch.tensor([0.0]), torch.tensor([1.0])) |
|
>>> m.sample() # Laplace distributed with loc=0, scale=1 |
|
tensor([ 0.1046]) |
|
|
|
Args: |
|
loc (float or Tensor): mean of the distribution |
|
scale (float or Tensor): scale of the distribution |
|
""" |
|
|
|
arg_constraints = {"loc": constraints.real, "scale": constraints.positive} |
|
support = constraints.real |
|
has_rsample = True |
|
|
|
@property |
|
def mean(self) -> Tensor: |
|
return self.loc |
|
|
|
@property |
|
def mode(self) -> Tensor: |
|
return self.loc |
|
|
|
@property |
|
def variance(self) -> Tensor: |
|
return 2 * self.scale.pow(2) |
|
|
|
@property |
|
def stddev(self) -> Tensor: |
|
return (2**0.5) * self.scale |
|
|
|
def __init__(self, loc, scale, validate_args=None): |
|
self.loc, self.scale = broadcast_all(loc, scale) |
|
if isinstance(loc, _Number) and isinstance(scale, _Number): |
|
batch_shape = torch.Size() |
|
else: |
|
batch_shape = self.loc.size() |
|
super().__init__(batch_shape, validate_args=validate_args) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(Laplace, _instance) |
|
batch_shape = torch.Size(batch_shape) |
|
new.loc = self.loc.expand(batch_shape) |
|
new.scale = self.scale.expand(batch_shape) |
|
super(Laplace, new).__init__(batch_shape, validate_args=False) |
|
new._validate_args = self._validate_args |
|
return new |
|
|
|
def rsample(self, sample_shape: _size = torch.Size()) -> Tensor: |
|
shape = self._extended_shape(sample_shape) |
|
finfo = torch.finfo(self.loc.dtype) |
|
if torch._C._get_tracing_state(): |
|
|
|
u = torch.rand(shape, dtype=self.loc.dtype, device=self.loc.device) * 2 - 1 |
|
return self.loc - self.scale * u.sign() * torch.log1p( |
|
-u.abs().clamp(min=finfo.tiny) |
|
) |
|
u = self.loc.new(shape).uniform_(finfo.eps - 1, 1) |
|
|
|
|
|
return self.loc - self.scale * u.sign() * torch.log1p(-u.abs()) |
|
|
|
def log_prob(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
return -torch.log(2 * self.scale) - torch.abs(value - self.loc) / self.scale |
|
|
|
def cdf(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
return 0.5 - 0.5 * (value - self.loc).sign() * torch.expm1( |
|
-(value - self.loc).abs() / self.scale |
|
) |
|
|
|
def icdf(self, value): |
|
term = value - 0.5 |
|
return self.loc - self.scale * (term).sign() * torch.log1p(-2 * term.abs()) |
|
|
|
def entropy(self): |
|
return 1 + torch.log(2 * self.scale) |
|
|