|
|
|
import torch |
|
from torch import Tensor |
|
from torch.distributions import constraints |
|
from torch.distributions.gamma import Gamma |
|
from torch.distributions.transformed_distribution import TransformedDistribution |
|
from torch.distributions.transforms import PowerTransform |
|
|
|
|
|
__all__ = ["InverseGamma"] |
|
|
|
|
|
class InverseGamma(TransformedDistribution): |
|
r""" |
|
Creates an inverse gamma distribution parameterized by :attr:`concentration` and :attr:`rate` |
|
where:: |
|
|
|
X ~ Gamma(concentration, rate) |
|
Y = 1 / X ~ InverseGamma(concentration, rate) |
|
|
|
Example:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterinistic") |
|
>>> m = InverseGamma(torch.tensor([2.0]), torch.tensor([3.0])) |
|
>>> m.sample() |
|
tensor([ 1.2953]) |
|
|
|
Args: |
|
concentration (float or Tensor): shape parameter of the distribution |
|
(often referred to as alpha) |
|
rate (float or Tensor): rate = 1 / scale of the distribution |
|
(often referred to as beta) |
|
""" |
|
|
|
arg_constraints = { |
|
"concentration": constraints.positive, |
|
"rate": constraints.positive, |
|
} |
|
support = constraints.positive |
|
has_rsample = True |
|
|
|
def __init__(self, concentration, rate, validate_args=None): |
|
base_dist = Gamma(concentration, rate, validate_args=validate_args) |
|
neg_one = -base_dist.rate.new_ones(()) |
|
super().__init__( |
|
base_dist, PowerTransform(neg_one), validate_args=validate_args |
|
) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(InverseGamma, _instance) |
|
return super().expand(batch_shape, _instance=new) |
|
|
|
@property |
|
def concentration(self) -> Tensor: |
|
return self.base_dist.concentration |
|
|
|
@property |
|
def rate(self) -> Tensor: |
|
return self.base_dist.rate |
|
|
|
@property |
|
def mean(self) -> Tensor: |
|
result = self.rate / (self.concentration - 1) |
|
return torch.where(self.concentration > 1, result, torch.inf) |
|
|
|
@property |
|
def mode(self) -> Tensor: |
|
return self.rate / (self.concentration + 1) |
|
|
|
@property |
|
def variance(self) -> Tensor: |
|
result = self.rate.square() / ( |
|
(self.concentration - 1).square() * (self.concentration - 2) |
|
) |
|
return torch.where(self.concentration > 2, result, torch.inf) |
|
|
|
def entropy(self): |
|
return ( |
|
self.concentration |
|
+ self.rate.log() |
|
+ self.concentration.lgamma() |
|
- (1 + self.concentration) * self.concentration.digamma() |
|
) |
|
|