|
|
|
import math |
|
|
|
import torch |
|
from torch import inf, Tensor |
|
from torch.distributions import constraints |
|
from torch.distributions.cauchy import Cauchy |
|
from torch.distributions.transformed_distribution import TransformedDistribution |
|
from torch.distributions.transforms import AbsTransform |
|
|
|
|
|
__all__ = ["HalfCauchy"] |
|
|
|
|
|
class HalfCauchy(TransformedDistribution): |
|
r""" |
|
Creates a half-Cauchy distribution parameterized by `scale` where:: |
|
|
|
X ~ Cauchy(0, scale) |
|
Y = |X| ~ HalfCauchy(scale) |
|
|
|
Example:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> m = HalfCauchy(torch.tensor([1.0])) |
|
>>> m.sample() # half-cauchy distributed with scale=1 |
|
tensor([ 2.3214]) |
|
|
|
Args: |
|
scale (float or Tensor): scale of the full Cauchy distribution |
|
""" |
|
|
|
arg_constraints = {"scale": constraints.positive} |
|
support = constraints.nonnegative |
|
has_rsample = True |
|
|
|
def __init__(self, scale, validate_args=None): |
|
base_dist = Cauchy(0, scale, validate_args=False) |
|
super().__init__(base_dist, AbsTransform(), validate_args=validate_args) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(HalfCauchy, _instance) |
|
return super().expand(batch_shape, _instance=new) |
|
|
|
@property |
|
def scale(self) -> Tensor: |
|
return self.base_dist.scale |
|
|
|
@property |
|
def mean(self) -> Tensor: |
|
return torch.full( |
|
self._extended_shape(), |
|
math.inf, |
|
dtype=self.scale.dtype, |
|
device=self.scale.device, |
|
) |
|
|
|
@property |
|
def mode(self) -> Tensor: |
|
return torch.zeros_like(self.scale) |
|
|
|
@property |
|
def variance(self) -> Tensor: |
|
return self.base_dist.variance |
|
|
|
def log_prob(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
value = torch.as_tensor( |
|
value, dtype=self.base_dist.scale.dtype, device=self.base_dist.scale.device |
|
) |
|
log_prob = self.base_dist.log_prob(value) + math.log(2) |
|
log_prob = torch.where(value >= 0, log_prob, -inf) |
|
return log_prob |
|
|
|
def cdf(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
return 2 * self.base_dist.cdf(value) - 1 |
|
|
|
def icdf(self, prob): |
|
return self.base_dist.icdf((prob + 1) / 2) |
|
|
|
def entropy(self): |
|
return self.base_dist.entropy() - math.log(2) |
|
|