|
|
|
import math |
|
|
|
import torch |
|
from torch import inf, nan, Tensor |
|
from torch.distributions import constraints |
|
from torch.distributions.distribution import Distribution |
|
from torch.distributions.utils import broadcast_all |
|
from torch.types import _Number, _size |
|
|
|
|
|
__all__ = ["Cauchy"] |
|
|
|
|
|
class Cauchy(Distribution): |
|
r""" |
|
Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of |
|
independent normally distributed random variables with means `0` follows a |
|
Cauchy distribution. |
|
|
|
Example:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0])) |
|
>>> m.sample() # sample from a Cauchy distribution with loc=0 and scale=1 |
|
tensor([ 2.3214]) |
|
|
|
Args: |
|
loc (float or Tensor): mode or median of the distribution. |
|
scale (float or Tensor): half width at half maximum. |
|
""" |
|
|
|
arg_constraints = {"loc": constraints.real, "scale": constraints.positive} |
|
support = constraints.real |
|
has_rsample = True |
|
|
|
def __init__(self, loc, scale, validate_args=None): |
|
self.loc, self.scale = broadcast_all(loc, scale) |
|
if isinstance(loc, _Number) and isinstance(scale, _Number): |
|
batch_shape = torch.Size() |
|
else: |
|
batch_shape = self.loc.size() |
|
super().__init__(batch_shape, validate_args=validate_args) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(Cauchy, _instance) |
|
batch_shape = torch.Size(batch_shape) |
|
new.loc = self.loc.expand(batch_shape) |
|
new.scale = self.scale.expand(batch_shape) |
|
super(Cauchy, new).__init__(batch_shape, validate_args=False) |
|
new._validate_args = self._validate_args |
|
return new |
|
|
|
@property |
|
def mean(self) -> Tensor: |
|
return torch.full( |
|
self._extended_shape(), nan, dtype=self.loc.dtype, device=self.loc.device |
|
) |
|
|
|
@property |
|
def mode(self) -> Tensor: |
|
return self.loc |
|
|
|
@property |
|
def variance(self) -> Tensor: |
|
return torch.full( |
|
self._extended_shape(), inf, dtype=self.loc.dtype, device=self.loc.device |
|
) |
|
|
|
def rsample(self, sample_shape: _size = torch.Size()) -> Tensor: |
|
shape = self._extended_shape(sample_shape) |
|
eps = self.loc.new(shape).cauchy_() |
|
return self.loc + eps * self.scale |
|
|
|
def log_prob(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
return ( |
|
-math.log(math.pi) |
|
- self.scale.log() |
|
- (((value - self.loc) / self.scale) ** 2).log1p() |
|
) |
|
|
|
def cdf(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
return torch.atan((value - self.loc) / self.scale) / math.pi + 0.5 |
|
|
|
def icdf(self, value): |
|
return torch.tan(math.pi * (value - 0.5)) * self.scale + self.loc |
|
|
|
def entropy(self): |
|
return math.log(4 * math.pi) + self.scale.log() |
|
|