|
|
|
import torch |
|
from torch import nan, Tensor |
|
from torch.distributions import constraints |
|
from torch.distributions.distribution import Distribution |
|
from torch.distributions.utils import lazy_property, logits_to_probs, probs_to_logits |
|
|
|
|
|
__all__ = ["Categorical"] |
|
|
|
|
|
class Categorical(Distribution): |
|
r""" |
|
Creates a categorical distribution parameterized by either :attr:`probs` or |
|
:attr:`logits` (but not both). |
|
|
|
.. note:: |
|
It is equivalent to the distribution that :func:`torch.multinomial` |
|
samples from. |
|
|
|
Samples are integers from :math:`\{0, \ldots, K-1\}` where `K` is ``probs.size(-1)``. |
|
|
|
If `probs` is 1-dimensional with length-`K`, each element is the relative probability |
|
of sampling the class at that index. |
|
|
|
If `probs` is N-dimensional, the first N-1 dimensions are treated as a batch of |
|
relative probability vectors. |
|
|
|
.. note:: The `probs` argument must be non-negative, finite and have a non-zero sum, |
|
and it will be normalized to sum to 1 along the last dimension. :attr:`probs` |
|
will return this normalized value. |
|
The `logits` argument will be interpreted as unnormalized log probabilities |
|
and can therefore be any real number. It will likewise be normalized so that |
|
the resulting probabilities sum to 1 along the last dimension. :attr:`logits` |
|
will return this normalized value. |
|
|
|
See also: :func:`torch.multinomial` |
|
|
|
Example:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> m = Categorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ])) |
|
>>> m.sample() # equal probability of 0, 1, 2, 3 |
|
tensor(3) |
|
|
|
Args: |
|
probs (Tensor): event probabilities |
|
logits (Tensor): event log probabilities (unnormalized) |
|
""" |
|
|
|
arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector} |
|
has_enumerate_support = True |
|
|
|
def __init__(self, probs=None, logits=None, validate_args=None): |
|
if (probs is None) == (logits is None): |
|
raise ValueError( |
|
"Either `probs` or `logits` must be specified, but not both." |
|
) |
|
if probs is not None: |
|
if probs.dim() < 1: |
|
raise ValueError("`probs` parameter must be at least one-dimensional.") |
|
self.probs = probs / probs.sum(-1, keepdim=True) |
|
else: |
|
if logits.dim() < 1: |
|
raise ValueError("`logits` parameter must be at least one-dimensional.") |
|
|
|
self.logits = logits - logits.logsumexp(dim=-1, keepdim=True) |
|
self._param = self.probs if probs is not None else self.logits |
|
self._num_events = self._param.size()[-1] |
|
batch_shape = ( |
|
self._param.size()[:-1] if self._param.ndimension() > 1 else torch.Size() |
|
) |
|
super().__init__(batch_shape, validate_args=validate_args) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(Categorical, _instance) |
|
batch_shape = torch.Size(batch_shape) |
|
param_shape = batch_shape + torch.Size((self._num_events,)) |
|
if "probs" in self.__dict__: |
|
new.probs = self.probs.expand(param_shape) |
|
new._param = new.probs |
|
if "logits" in self.__dict__: |
|
new.logits = self.logits.expand(param_shape) |
|
new._param = new.logits |
|
new._num_events = self._num_events |
|
super(Categorical, new).__init__(batch_shape, validate_args=False) |
|
new._validate_args = self._validate_args |
|
return new |
|
|
|
def _new(self, *args, **kwargs): |
|
return self._param.new(*args, **kwargs) |
|
|
|
@constraints.dependent_property(is_discrete=True, event_dim=0) |
|
def support(self): |
|
return constraints.integer_interval(0, self._num_events - 1) |
|
|
|
@lazy_property |
|
def logits(self) -> Tensor: |
|
return probs_to_logits(self.probs) |
|
|
|
@lazy_property |
|
def probs(self) -> Tensor: |
|
return logits_to_probs(self.logits) |
|
|
|
@property |
|
def param_shape(self) -> torch.Size: |
|
return self._param.size() |
|
|
|
@property |
|
def mean(self) -> Tensor: |
|
return torch.full( |
|
self._extended_shape(), |
|
nan, |
|
dtype=self.probs.dtype, |
|
device=self.probs.device, |
|
) |
|
|
|
@property |
|
def mode(self) -> Tensor: |
|
return self.probs.argmax(dim=-1) |
|
|
|
@property |
|
def variance(self) -> Tensor: |
|
return torch.full( |
|
self._extended_shape(), |
|
nan, |
|
dtype=self.probs.dtype, |
|
device=self.probs.device, |
|
) |
|
|
|
def sample(self, sample_shape=torch.Size()): |
|
if not isinstance(sample_shape, torch.Size): |
|
sample_shape = torch.Size(sample_shape) |
|
probs_2d = self.probs.reshape(-1, self._num_events) |
|
samples_2d = torch.multinomial(probs_2d, sample_shape.numel(), True).T |
|
return samples_2d.reshape(self._extended_shape(sample_shape)) |
|
|
|
def log_prob(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
value = value.long().unsqueeze(-1) |
|
value, log_pmf = torch.broadcast_tensors(value, self.logits) |
|
value = value[..., :1] |
|
return log_pmf.gather(-1, value).squeeze(-1) |
|
|
|
def entropy(self): |
|
min_real = torch.finfo(self.logits.dtype).min |
|
logits = torch.clamp(self.logits, min=min_real) |
|
p_log_p = logits * self.probs |
|
return -p_log_p.sum(-1) |
|
|
|
def enumerate_support(self, expand=True): |
|
num_events = self._num_events |
|
values = torch.arange(num_events, dtype=torch.long, device=self._param.device) |
|
values = values.view((-1,) + (1,) * len(self._batch_shape)) |
|
if expand: |
|
values = values.expand((-1,) + self._batch_shape) |
|
return values |
|
|