|
|
|
import torch |
|
from torch import Tensor |
|
from torch.distributions import constraints |
|
from torch.distributions.dirichlet import Dirichlet |
|
from torch.distributions.exp_family import ExponentialFamily |
|
from torch.distributions.utils import broadcast_all |
|
from torch.types import _Number, _size |
|
|
|
|
|
__all__ = ["Beta"] |
|
|
|
|
|
class Beta(ExponentialFamily): |
|
r""" |
|
Beta distribution parameterized by :attr:`concentration1` and :attr:`concentration0`. |
|
|
|
Example:: |
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic") |
|
>>> m = Beta(torch.tensor([0.5]), torch.tensor([0.5])) |
|
>>> m.sample() # Beta distributed with concentration concentration1 and concentration0 |
|
tensor([ 0.1046]) |
|
|
|
Args: |
|
concentration1 (float or Tensor): 1st concentration parameter of the distribution |
|
(often referred to as alpha) |
|
concentration0 (float or Tensor): 2nd concentration parameter of the distribution |
|
(often referred to as beta) |
|
""" |
|
|
|
arg_constraints = { |
|
"concentration1": constraints.positive, |
|
"concentration0": constraints.positive, |
|
} |
|
support = constraints.unit_interval |
|
has_rsample = True |
|
|
|
def __init__(self, concentration1, concentration0, validate_args=None): |
|
if isinstance(concentration1, _Number) and isinstance(concentration0, _Number): |
|
concentration1_concentration0 = torch.tensor( |
|
[float(concentration1), float(concentration0)] |
|
) |
|
else: |
|
concentration1, concentration0 = broadcast_all( |
|
concentration1, concentration0 |
|
) |
|
concentration1_concentration0 = torch.stack( |
|
[concentration1, concentration0], -1 |
|
) |
|
self._dirichlet = Dirichlet( |
|
concentration1_concentration0, validate_args=validate_args |
|
) |
|
super().__init__(self._dirichlet._batch_shape, validate_args=validate_args) |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(Beta, _instance) |
|
batch_shape = torch.Size(batch_shape) |
|
new._dirichlet = self._dirichlet.expand(batch_shape) |
|
super(Beta, new).__init__(batch_shape, validate_args=False) |
|
new._validate_args = self._validate_args |
|
return new |
|
|
|
@property |
|
def mean(self) -> Tensor: |
|
return self.concentration1 / (self.concentration1 + self.concentration0) |
|
|
|
@property |
|
def mode(self) -> Tensor: |
|
return self._dirichlet.mode[..., 0] |
|
|
|
@property |
|
def variance(self) -> Tensor: |
|
total = self.concentration1 + self.concentration0 |
|
return self.concentration1 * self.concentration0 / (total.pow(2) * (total + 1)) |
|
|
|
def rsample(self, sample_shape: _size = ()) -> Tensor: |
|
return self._dirichlet.rsample(sample_shape).select(-1, 0) |
|
|
|
def log_prob(self, value): |
|
if self._validate_args: |
|
self._validate_sample(value) |
|
heads_tails = torch.stack([value, 1.0 - value], -1) |
|
return self._dirichlet.log_prob(heads_tails) |
|
|
|
def entropy(self): |
|
return self._dirichlet.entropy() |
|
|
|
@property |
|
def concentration1(self) -> Tensor: |
|
result = self._dirichlet.concentration[..., 0] |
|
if isinstance(result, _Number): |
|
return torch.tensor([result]) |
|
else: |
|
return result |
|
|
|
@property |
|
def concentration0(self) -> Tensor: |
|
result = self._dirichlet.concentration[..., 1] |
|
if isinstance(result, _Number): |
|
return torch.tensor([result]) |
|
else: |
|
return result |
|
|
|
@property |
|
def _natural_params(self) -> tuple[Tensor, Tensor]: |
|
return (self.concentration1, self.concentration0) |
|
|
|
def _log_normalizer(self, x, y): |
|
return torch.lgamma(x) + torch.lgamma(y) - torch.lgamma(x + y) |
|
|