|
|
|
import collections |
|
import dataclasses |
|
import io |
|
import operator |
|
import os |
|
import pickle |
|
import queue |
|
import threading |
|
import uuid |
|
import warnings |
|
from abc import ABC, abstractmethod |
|
from collections.abc import Generator, Iterable, Iterator, Sequence |
|
from contextlib import contextmanager |
|
from dataclasses import dataclass |
|
from io import UnsupportedOperation |
|
from pathlib import Path |
|
from typing import Any, Callable, cast, IO, Optional, Union |
|
|
|
|
|
from typing_extensions import Buffer |
|
|
|
import torch |
|
from torch import Tensor |
|
from torch._utils import _get_available_device_type, _get_device_module |
|
from torch.distributed._shard._utils import narrow_tensor_by_index |
|
from torch.distributed.checkpoint._extension import ( |
|
ExtensionRegistry, |
|
StreamTransformExtension, |
|
) |
|
from torch.distributed.checkpoint.metadata import Metadata, STATE_DICT_TYPE, StorageMeta |
|
from torch.distributed.checkpoint.planner import ( |
|
LoadItemType, |
|
LoadPlan, |
|
LoadPlanner, |
|
ReadItem, |
|
SavePlan, |
|
SavePlanner, |
|
WriteItem, |
|
WriteItemType, |
|
) |
|
from torch.distributed.checkpoint.staging import BlockingAsyncStager |
|
from torch.distributed.checkpoint.storage import ( |
|
StorageReader, |
|
StorageWriter, |
|
WriteResult, |
|
) |
|
from torch.distributed.checkpoint.utils import _create_file_view |
|
from torch.futures import Future |
|
|
|
|
|
__all__ = ["FileSystemWriter", "FileSystemReader", "FileSystem", "FileSystemBase"] |
|
|
|
_metadata_fn: str = ".metadata" |
|
|
|
|
|
@dataclass |
|
class _StorageInfo: |
|
"""This is the per entry storage info.""" |
|
|
|
relative_path: str |
|
offset: int |
|
length: int |
|
transform_descriptors: Optional[Sequence[str]] = None |
|
|
|
def __getstate__(self): |
|
return {k: v for k, v in self.__dict__.items() if v is not None} |
|
|
|
|
|
@dataclass |
|
class _StoragePrefix: |
|
prefix: str |
|
|
|
|
|
DEFAULT_SUFFIX = ".distcp" |
|
|
|
|
|
def _generate_uuid() -> str: |
|
return str(uuid.uuid4()) |
|
|
|
|
|
class _TensorLoader(ABC): |
|
@abstractmethod |
|
def add(self, size: int, obj: object) -> None: |
|
pass |
|
|
|
@abstractmethod |
|
def start_loading(self) -> None: |
|
pass |
|
|
|
@abstractmethod |
|
def values(self) -> Iterator[tuple[torch.Tensor, object]]: |
|
pass |
|
|
|
|
|
class _SerialCpuLoader(_TensorLoader): |
|
def __init__(self, resolve_fun: Callable) -> None: |
|
self.resolve_fun = resolve_fun |
|
self.items: list[tuple[int, object]] = [] |
|
|
|
def add(self, size: int, obj: object) -> None: |
|
self.items.append((size, obj)) |
|
|
|
def start_loading(self) -> None: |
|
pass |
|
|
|
def values(self) -> Iterator[tuple[torch.Tensor, object]]: |
|
for _, obj in self.items: |
|
tensor = self.resolve_fun(obj).detach() |
|
tensor = tensor.cpu() |
|
if tensor.storage().size() != tensor.numel(): |
|
tensor = tensor.clone() |
|
yield ( |
|
tensor, |
|
obj, |
|
) |
|
|
|
|
|
class _OverlappingCpuLoader(_TensorLoader): |
|
def __init__( |
|
self, |
|
resolve_fun: Callable, |
|
stream: Optional[torch.Stream] = None, |
|
inflight_threshhold: int = 1_000_000, |
|
) -> None: |
|
self.resolve_fun = resolve_fun |
|
self.items: list[tuple[int, object]] = [] |
|
self.inflight_threshhold = inflight_threshhold |
|
self.in_flight_data = 0 |
|
self.current_items: collections.deque = collections.deque() |
|
self.idx = 0 |
|
self.started = False |
|
self.device_type = ( |
|
stream.device_type if stream else _get_available_device_type() |
|
) |
|
self.device_module = _get_device_module(self.device_type) |
|
self.stream = cast( |
|
torch.cuda.Stream, stream or self.device_module.current_stream() |
|
) |
|
if self.stream != self.device_module.current_stream(): |
|
self.stream.wait_stream(self.device_module.current_stream()) |
|
|
|
@property |
|
def _done(self) -> bool: |
|
return self.idx >= len(self.items) |
|
|
|
def _drain(self) -> list[tuple[torch.Tensor, object]]: |
|
drained = [] |
|
if self.in_flight_data >= self.inflight_threshhold: |
|
self.stream.synchronize() |
|
while self.in_flight_data >= self.inflight_threshhold: |
|
val = self.current_items.popleft() |
|
self.in_flight_data -= val[0].numel() * val[0].element_size() |
|
drained.append(val) |
|
return drained |
|
|
|
def _refill(self) -> None: |
|
with self.device_module.stream(self.stream): |
|
while not self._done and self.in_flight_data < self.inflight_threshhold: |
|
_, obj = self.items[self.idx] |
|
self.idx += 1 |
|
tensor = self.resolve_fun(obj).detach() |
|
if tensor.device.type == self.device_type: |
|
tensor = tensor.to(device="cpu", non_blocking=True) |
|
elif tensor.device == torch.device("cpu"): |
|
if ( |
|
tensor.untyped_storage().size() |
|
!= tensor.numel() * tensor.itemsize |
|
): |
|
|
|
tensor = tensor.clone() |
|
|
|
self.current_items.append( |
|
( |
|
tensor, |
|
obj, |
|
) |
|
) |
|
self.in_flight_data += tensor.numel() * tensor.element_size() |
|
|
|
def _finish(self) -> Iterable[tuple[torch.Tensor, object]]: |
|
assert self._done |
|
if len(self.current_items) > 0: |
|
self.stream.synchronize() |
|
return self.current_items |
|
|
|
def add(self, size: int, obj: object) -> None: |
|
if self.started: |
|
raise RuntimeError("cannot add items after loading started") |
|
self.items.append((size, obj)) |
|
|
|
def start_loading(self) -> None: |
|
if self.started: |
|
return |
|
self.started = True |
|
self.items.sort(key=operator.itemgetter(0)) |
|
self._refill() |
|
|
|
def values(self) -> Iterator[tuple[torch.Tensor, object]]: |
|
self.start_loading() |
|
while not self._done: |
|
drained = self._drain() |
|
self._refill() |
|
yield from drained |
|
|
|
yield from self._finish() |
|
|
|
|
|
class _StorageWriterTransforms: |
|
""" |
|
This is experimental, and will likely move elsewhere in the |
|
future. It lives here to minimize changes while we are still |
|
learning and gathering feedback. |
|
""" |
|
|
|
def __init__( |
|
self, extensions: Optional[Sequence[StreamTransformExtension]] = None |
|
) -> None: |
|
""" |
|
If the extensions arg is None, this means the implementation |
|
should provide whatever defaults it chooses. An empty |
|
sequence indicates no extensions should be used. At this |
|
time, the default extensions sequence is empty. |
|
""" |
|
self.extensions = () if extensions is None else extensions |
|
|
|
def transform_save_stream( |
|
self, write_item: WriteItem, raw_stream: io.IOBase |
|
) -> tuple[IO[bytes], list[str]]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class NoCloseWriter(io.IOBase): |
|
def __init__(self, raw: io.IOBase): |
|
self.raw = raw |
|
|
|
def writeable(self) -> bool: |
|
return True |
|
|
|
def write(self, b: Buffer) -> int: |
|
return self.raw.write(b) |
|
|
|
def close(self): |
|
self.flush() |
|
self.raw.flush() |
|
|
|
|
|
transform_to = cast(IO[bytes], NoCloseWriter(raw_stream)) |
|
|
|
for ex in self.extensions: |
|
transform_to = ex.transform_to(transform_to) |
|
|
|
return (transform_to, [ex.get_descriptor() for ex in reversed(self.extensions)]) |
|
|
|
|
|
def _item_size(item: WriteItem) -> int: |
|
size = 1 |
|
assert item.tensor_data is not None |
|
|
|
for s in item.tensor_data.size: |
|
size *= s |
|
|
|
dtype = item.tensor_data.properties.dtype |
|
return size * torch._utils._element_size(dtype) |
|
|
|
|
|
def _split_by_size_and_type(bins: int, items: list[WriteItem]) -> list[list[WriteItem]]: |
|
if bins == 1: |
|
return [items] |
|
|
|
bytes_w = [wi for wi in items if wi.type == WriteItemType.BYTE_IO] |
|
tensor_w = [wi for wi in items if wi.type != WriteItemType.BYTE_IO] |
|
|
|
buckets: list[list[WriteItem]] = [[] for _ in range(bins)] |
|
bucket_sizes = [0 for _ in range(bins)] |
|
|
|
tensor_w.sort(key=_item_size, reverse=True) |
|
|
|
for i, wi in enumerate(bytes_w): |
|
buckets[i % bins].append(wi) |
|
|
|
for wi in tensor_w: |
|
|
|
idx = min(enumerate(bucket_sizes), key=operator.itemgetter(1))[0] |
|
buckets[idx].append(wi) |
|
bucket_sizes[idx] += _item_size(wi) |
|
|
|
return buckets |
|
|
|
|
|
def _write_item( |
|
transforms: _StorageWriterTransforms, |
|
stream: io.IOBase, |
|
data: Union[io.BytesIO, torch.Tensor], |
|
write_item: WriteItem, |
|
storage_key: str, |
|
safe_tensors: bool = False, |
|
) -> WriteResult: |
|
offset = stream.tell() |
|
|
|
(transform_to, transform_descriptors) = transforms.transform_save_stream( |
|
write_item, stream |
|
) |
|
|
|
if write_item.type == WriteItemType.BYTE_IO: |
|
assert isinstance(data, io.BytesIO) |
|
transform_to.write(data.getbuffer()) |
|
else: |
|
assert isinstance(data, torch.Tensor) |
|
assert data.device == torch.device("cpu") |
|
if not safe_tensors: |
|
torch.save(data, transform_to) |
|
|
|
transform_to.close() |
|
|
|
if not safe_tensors or isinstance(data, io.BytesIO): |
|
length = stream.tell() - offset |
|
else: |
|
length = data.numel() * data.element_size() |
|
|
|
|
|
|
|
info_transform_descriptors = ( |
|
None if len(transform_descriptors) == 0 else transform_descriptors |
|
) |
|
|
|
return WriteResult( |
|
index=write_item.index, |
|
size_in_bytes=length, |
|
storage_data=_StorageInfo( |
|
storage_key, |
|
offset, |
|
length, |
|
transform_descriptors=info_transform_descriptors, |
|
), |
|
) |
|
|
|
|
|
def _write_files_from_queue( |
|
create_stream: Callable, |
|
file_queue: queue.Queue, |
|
result_queue: queue.Queue, |
|
planner: SavePlanner, |
|
transforms: _StorageWriterTransforms, |
|
inflight_threshhold: int, |
|
use_fsync: bool, |
|
thread_count: int, |
|
safe_tensors: bool, |
|
) -> None: |
|
try: |
|
while True: |
|
file_name, storage_key, write_items = file_queue.get_nowait() |
|
loader: _TensorLoader |
|
|
|
custom_backend_name = torch._C._get_privateuse1_backend_name() |
|
custom_device_mod = getattr(torch, custom_backend_name, None) |
|
|
|
|
|
|
|
|
|
if ( |
|
thread_count == 1 |
|
and ( |
|
torch.cuda.is_available() |
|
or (custom_device_mod and custom_device_mod.is_available()) |
|
) |
|
and inflight_threshhold > 0 |
|
): |
|
loader = _OverlappingCpuLoader( |
|
planner.resolve_data, |
|
inflight_threshhold=inflight_threshhold, |
|
) |
|
else: |
|
loader = _SerialCpuLoader( |
|
planner.resolve_data, |
|
) |
|
|
|
tensor_w = [wi for wi in write_items if wi.type != WriteItemType.BYTE_IO] |
|
for write_item in tensor_w: |
|
loader.add(_item_size(write_item), write_item) |
|
loader.start_loading() |
|
|
|
bytes_w = [wi for wi in write_items if wi.type == WriteItemType.BYTE_IO] |
|
write_results = [] |
|
|
|
with create_stream(file_name, "wb") as stream: |
|
for write_item in bytes_w: |
|
data = planner.resolve_data(write_item) |
|
write_results.append( |
|
_write_item( |
|
transforms, |
|
stream, |
|
data, |
|
write_item, |
|
storage_key, |
|
safe_tensors, |
|
) |
|
) |
|
|
|
tensor_dict = {} |
|
for tensor, write_item in loader.values(): |
|
assert tensor.is_cpu |
|
write_results.append( |
|
_write_item( |
|
transforms, |
|
stream, |
|
tensor, |
|
write_item, |
|
storage_key, |
|
safe_tensors, |
|
) |
|
) |
|
tensor_dict[write_item.index.fqn] = tensor |
|
|
|
if safe_tensors: |
|
from safetensors.torch import save |
|
|
|
stream.write(save(tensor_dict)) |
|
|
|
if use_fsync: |
|
try: |
|
os.fsync(stream.fileno()) |
|
except (AttributeError, UnsupportedOperation): |
|
os.sync() |
|
stream.close() |
|
result_queue.put(write_results) |
|
except queue.Empty: |
|
pass |
|
|
|
|
|
class FileSystemBase(ABC): |
|
@contextmanager |
|
@abstractmethod |
|
def create_stream( |
|
self, path: Union[str, os.PathLike], mode: str |
|
) -> Generator[io.IOBase, None, None]: ... |
|
|
|
@abstractmethod |
|
def concat_path( |
|
self, path: Union[str, os.PathLike], suffix: str |
|
) -> Union[str, os.PathLike]: ... |
|
|
|
@abstractmethod |
|
def rename( |
|
self, path: Union[str, os.PathLike], new_path: Union[str, os.PathLike] |
|
) -> None: ... |
|
|
|
@abstractmethod |
|
def init_path(self, path: Union[str, os.PathLike]) -> Union[str, os.PathLike]: ... |
|
|
|
@abstractmethod |
|
def mkdir(self, path: Union[str, os.PathLike]) -> None: ... |
|
|
|
@classmethod |
|
@abstractmethod |
|
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool: ... |
|
|
|
@abstractmethod |
|
def exists(self, path: Union[str, os.PathLike]) -> bool: ... |
|
|
|
@abstractmethod |
|
def rm_file(self, path: Union[str, os.PathLike]) -> None: ... |
|
|
|
|
|
class FileSystem(FileSystemBase): |
|
@contextmanager |
|
def create_stream( |
|
self, path: Union[str, os.PathLike], mode: str |
|
) -> Generator[io.IOBase, None, None]: |
|
if not isinstance(path, Path): |
|
path = Path(path) |
|
with path.open(mode) as stream: |
|
yield cast(io.IOBase, stream) |
|
|
|
def concat_path( |
|
self, path: Union[str, os.PathLike], suffix: str |
|
) -> Union[str, os.PathLike]: |
|
if not isinstance(path, Path): |
|
path = Path(path) |
|
return path / suffix |
|
|
|
def init_path(self, path: Union[str, os.PathLike]) -> Union[str, os.PathLike]: |
|
if not isinstance(path, Path): |
|
path = Path(path) |
|
return path |
|
|
|
def rename( |
|
self, path: Union[str, os.PathLike], new_path: Union[str, os.PathLike] |
|
) -> None: |
|
if not isinstance(path, Path): |
|
path = Path(path) |
|
|
|
path.rename(cast(Path, new_path)) |
|
|
|
def mkdir(self, path: Union[str, os.PathLike]) -> None: |
|
if not isinstance(path, Path): |
|
path = Path(path) |
|
path.mkdir(parents=True, exist_ok=True) |
|
|
|
@classmethod |
|
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool: |
|
if isinstance(checkpoint_id, Path): |
|
return True |
|
|
|
if "://" in str(checkpoint_id): |
|
return False |
|
|
|
for p in Path(checkpoint_id).parents: |
|
if p.exists() and os.access(str(p), os.W_OK): |
|
return True |
|
|
|
return False |
|
|
|
def exists(self, path: Union[str, os.PathLike]) -> bool: |
|
if not isinstance(path, Path): |
|
path = Path(path) |
|
return path.exists() |
|
|
|
def rm_file(self, path: Union[str, os.PathLike]) -> None: |
|
if not isinstance(path, Path): |
|
path = Path(path) |
|
path.unlink() |
|
|
|
|
|
class _FileSystemWriter(StorageWriter): |
|
""" |
|
Basic implementation of StorageWriter using file IO. |
|
|
|
This implementation makes the following assumptions and simplifications: |
|
|
|
* The checkpoint path is an empty or non-existing directory. |
|
* File creation is atomic |
|
|
|
The checkpoint consist of one file per write request plus |
|
a `.metadata` file with the serialized metadata. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
path: Union[str, os.PathLike], |
|
single_file_per_rank: bool = True, |
|
sync_files: bool = True, |
|
thread_count: int = 1, |
|
per_thread_copy_ahead: int = 10_000_000, |
|
overwrite: bool = True, |
|
_extensions: Optional[Sequence[StreamTransformExtension]] = None, |
|
*args: Any, |
|
**kwargs: Any, |
|
) -> None: |
|
""" |
|
Initialize the writer pointing to `path`. |
|
|
|
Args: |
|
path: directory where the checkpoint will be written to. |
|
single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True. |
|
sync_files : force files to be synced to permanent storage. Default to True. |
|
thread_count: Number of IO threads to use to write. Default to 1. |
|
per_thread_copy_ahead: How many bytes to copy from the GPU ahead of saving then. Default 10Mb. |
|
overwrite: Whether to allow overwriting existing checkpoints. Defaults to True. |
|
_extensions: Extensions to apply to output streams (EXPERIMENTAL) |
|
|
|
N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure. |
|
""" |
|
super().__init__() |
|
self.fs = FileSystem() |
|
self.path = self.fs.init_path(path) |
|
self.single_file_per_rank = single_file_per_rank |
|
self.sync_files = sync_files |
|
self.thread_count = thread_count |
|
self.per_thread_copy_ahead = per_thread_copy_ahead |
|
self.save_id = _generate_uuid() |
|
self.overwrite = overwrite |
|
self.transforms = _StorageWriterTransforms(_extensions) |
|
|
|
def reset(self, checkpoint_id: Union[str, os.PathLike, None] = None) -> None: |
|
if checkpoint_id: |
|
self.path = self.fs.init_path(checkpoint_id) |
|
self.save_id = _generate_uuid() |
|
|
|
def set_up_storage_writer(self, is_coordinator: bool) -> None: |
|
pass |
|
|
|
def prepare_local_plan(self, plan: SavePlan) -> SavePlan: |
|
self.fs.mkdir(self.path) |
|
if self.fs.exists(self.metadata_path): |
|
if self.overwrite: |
|
warnings.warn( |
|
f"Detected an existing checkpoint in {self.metadata_path}, overwriting since {self.overwrite=}." |
|
" Past version 2.5 of PyTorch, `overwrite` will default to False. Set this variable to True to" |
|
" maintain this functionality or False to raise when an existing checkpoint is found." |
|
) |
|
else: |
|
raise RuntimeError(f"Checkpoint already exists and {self.overwrite=}.") |
|
|
|
return plan |
|
|
|
def prepare_global_plan(self, plans: list[SavePlan]) -> list[SavePlan]: |
|
new_plans = [ |
|
dataclasses.replace(plan, storage_data=_StoragePrefix(f"__{i}_")) |
|
for i, plan in enumerate(plans) |
|
] |
|
return new_plans |
|
|
|
def write_data( |
|
self, |
|
plan: SavePlan, |
|
planner: SavePlanner, |
|
) -> Future[list[WriteResult]]: |
|
storage_plan: _StoragePrefix = plan.storage_data |
|
file_count = 0 |
|
|
|
def gen_file(): |
|
nonlocal file_count |
|
file_name = f"{storage_plan.prefix}{file_count}{DEFAULT_SUFFIX}" |
|
file_count += 1 |
|
return file_name |
|
|
|
file_queue: queue.Queue = queue.Queue() |
|
if self.single_file_per_rank: |
|
for bucket in _split_by_size_and_type(self.thread_count, plan.items): |
|
file_name = gen_file() |
|
path = self.fs.concat_path(self.path, file_name) |
|
file_queue.put((path, file_name, bucket)) |
|
else: |
|
for item in plan.items: |
|
file_name = gen_file() |
|
path = self.fs.concat_path(self.path, file_name) |
|
file_queue.put((path, file_name, [item])) |
|
|
|
return self._write_data(planner, file_queue) |
|
|
|
def _write_data( |
|
self, |
|
planner: SavePlanner, |
|
file_queue: queue.Queue, |
|
safe_tensors: bool = False, |
|
) -> Future[list[WriteResult]]: |
|
result_queue: queue.Queue = queue.Queue() |
|
|
|
threads = [] |
|
for _ in range(1, self.thread_count): |
|
t = threading.Thread( |
|
target=_write_files_from_queue, |
|
args=( |
|
self.fs.create_stream, |
|
file_queue, |
|
result_queue, |
|
planner, |
|
self.transforms, |
|
self.per_thread_copy_ahead, |
|
self.sync_files, |
|
self.thread_count, |
|
safe_tensors, |
|
), |
|
) |
|
t.start() |
|
threads.append(t) |
|
|
|
_write_files_from_queue( |
|
create_stream=self.fs.create_stream, |
|
file_queue=file_queue, |
|
result_queue=result_queue, |
|
planner=planner, |
|
transforms=self.transforms, |
|
inflight_threshhold=self.per_thread_copy_ahead, |
|
use_fsync=self.sync_files, |
|
thread_count=self.thread_count, |
|
safe_tensors=safe_tensors, |
|
) |
|
|
|
for t in threads: |
|
t.join() |
|
|
|
res = [] |
|
try: |
|
while True: |
|
res += result_queue.get_nowait() |
|
except queue.Empty: |
|
fut: Future[list[WriteResult]] = Future() |
|
fut.set_result(res) |
|
return fut |
|
|
|
def finish(self, metadata: Metadata, results: list[list[WriteResult]]) -> None: |
|
storage_md = {} |
|
for wr_list in results: |
|
storage_md.update({wr.index: wr.storage_data for wr in wr_list}) |
|
metadata.storage_data = storage_md |
|
|
|
metadata.storage_meta = self.storage_meta() |
|
|
|
tmp_path = cast(Path, self.fs.concat_path(self.path, f"{_metadata_fn}.tmp")) |
|
with self.fs.create_stream(tmp_path, "wb") as metadata_file: |
|
pickle.dump(metadata, metadata_file) |
|
if self.sync_files: |
|
try: |
|
os.fsync(metadata_file.fileno()) |
|
except (AttributeError, UnsupportedOperation): |
|
os.sync() |
|
|
|
|
|
if self.fs.exists(self.metadata_path): |
|
self.fs.rm_file(self.metadata_path) |
|
|
|
self.fs.rename(tmp_path, self.metadata_path) |
|
|
|
def storage_meta(self) -> Optional[StorageMeta]: |
|
return StorageMeta(checkpoint_id=self.checkpoint_id, save_id=self.save_id) |
|
|
|
@property |
|
def metadata_path(self) -> Union[str, os.PathLike]: |
|
return cast(Path, self.fs.concat_path(self.path, _metadata_fn)) |
|
|
|
@property |
|
def checkpoint_id(self) -> Union[str, os.PathLike]: |
|
""" |
|
return the checkpoint_id that will be used to save the checkpoint. |
|
""" |
|
return self.path |
|
|
|
@classmethod |
|
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool: |
|
return FileSystem.validate_checkpoint_id(checkpoint_id) |
|
|
|
|
|
class _StorageReaderTransforms: |
|
""" |
|
This is experimental, and will likely move elsewhere in the |
|
future. It lives here to minimize changes while we are still |
|
learning and gathering feedback. |
|
""" |
|
|
|
def __init__(self, extension_registry: Optional[ExtensionRegistry] = None) -> None: |
|
self.extension_registry = ( |
|
ExtensionRegistry() if extension_registry is None else extension_registry |
|
) |
|
|
|
def transform_load_stream( |
|
self, |
|
read_item: ReadItem, |
|
transform_descriptors: Sequence[str], |
|
raw_stream: IO[bytes], |
|
) -> IO[bytes]: |
|
extensions = self.extension_registry.from_descriptor_list(transform_descriptors) |
|
transform_from = raw_stream |
|
for ex in extensions: |
|
if isinstance(ex, StreamTransformExtension): |
|
transform_from = ex.transform_from(transform_from) |
|
return transform_from |
|
|
|
|
|
class FileSystemReader(StorageReader): |
|
def __init__( |
|
self, |
|
path: Union[str, os.PathLike], |
|
_extension_registry: Optional[ExtensionRegistry] = None, |
|
) -> None: |
|
super().__init__() |
|
self.fs = FileSystem() |
|
self.path = self.fs.init_path(path) |
|
self.storage_data: dict[Any, Any] = {} |
|
self.load_id = _generate_uuid() |
|
self.transforms = _StorageReaderTransforms(_extension_registry) |
|
|
|
def _slice_file(self, file, sinfo: _StorageInfo) -> IO[bytes]: |
|
return cast(IO[bytes], _create_file_view(file, sinfo.offset, sinfo.length)) |
|
|
|
def reset(self, checkpoint_id: Union[str, os.PathLike, None] = None) -> None: |
|
self.storage_data = {} |
|
if checkpoint_id: |
|
self.path = self.fs.init_path(checkpoint_id) |
|
self.load_id = _generate_uuid() |
|
|
|
def read_data(self, plan: LoadPlan, planner: LoadPlanner) -> Future[None]: |
|
|
|
per_file: dict[str, list[ReadItem]] = {} |
|
for read_item in plan.items: |
|
item_md: _StorageInfo = self.storage_data[read_item.storage_index] |
|
path = item_md.relative_path |
|
per_file.setdefault(path, []).append(read_item) |
|
|
|
for relative_path, reqs in per_file.items(): |
|
new_path = self.fs.concat_path(self.path, relative_path) |
|
with self.fs.create_stream(new_path, "rb") as stream: |
|
|
|
for req in reqs: |
|
item_md = self.storage_data[req.storage_index] |
|
file_slice = self._slice_file(stream, item_md) |
|
transform_from = self.transforms.transform_load_stream( |
|
req, |
|
|
|
|
|
item_md.transform_descriptors or (), |
|
file_slice, |
|
) |
|
|
|
if req.type == LoadItemType.BYTE_IO: |
|
read_bytes = io.BytesIO(transform_from.read(-1)) |
|
read_bytes.seek(0) |
|
planner.load_bytes(req, read_bytes) |
|
else: |
|
if transform_from.seekable(): |
|
seekable = transform_from |
|
else: |
|
|
|
|
|
seekable = io.BytesIO(transform_from.read(-1)) |
|
seekable.seek(0) |
|
|
|
tensor = cast( |
|
Tensor, |
|
torch.load( |
|
seekable, |
|
map_location="cpu", |
|
weights_only=True, |
|
), |
|
) |
|
tensor = narrow_tensor_by_index( |
|
tensor, req.storage_offsets, req.lengths |
|
) |
|
target_tensor = planner.resolve_tensor(req).detach() |
|
|
|
assert target_tensor.size() == tensor.size(), ( |
|
f"req {req.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}" |
|
) |
|
target_tensor.copy_(tensor) |
|
planner.commit_tensor(req, target_tensor) |
|
|
|
fut: Future = Future() |
|
fut.set_result(None) |
|
return fut |
|
|
|
|
|
def read_metadata(self) -> Metadata: |
|
path = self.fs.concat_path(self.path, ".metadata") |
|
with self.fs.create_stream(path, "rb") as metadata_file: |
|
metadata = pickle.load(metadata_file) |
|
|
|
if getattr(metadata, "storage_meta", None) is None: |
|
metadata.storage_meta = StorageMeta() |
|
metadata.storage_meta.load_id = self.load_id |
|
|
|
return metadata |
|
|
|
def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None: |
|
self.storage_data = metadata.storage_data |
|
assert self.storage_data is not None |
|
|
|
def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan: |
|
return plan |
|
|
|
def prepare_global_plan(self, plans: list[LoadPlan]) -> list[LoadPlan]: |
|
return plans |
|
|
|
@property |
|
def checkpoint_id(self) -> Union[str, os.PathLike]: |
|
""" |
|
return the checkpoint_id that will be used to load the checkpoint. |
|
""" |
|
return self.path |
|
|
|
@classmethod |
|
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool: |
|
return FileSystem.validate_checkpoint_id(checkpoint_id) |
|
|
|
|
|
class FileSystemWriter(_FileSystemWriter, BlockingAsyncStager): |
|
""" |
|
Basic implementation of StorageWriter using file IO. |
|
|
|
This implementation makes the following assumptions and simplifications: |
|
|
|
* The checkpoint path is an empty or non-existing directory. |
|
* File creation is atomic |
|
|
|
The checkpoint consist of one file per write request plus |
|
a `.metadata` file with the serialized metadata. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
path: Union[str, os.PathLike], |
|
single_file_per_rank: bool = True, |
|
sync_files: bool = True, |
|
thread_count: int = 1, |
|
per_thread_copy_ahead: int = 10_000_000, |
|
cache_staged_state_dict: bool = False, |
|
overwrite: bool = True, |
|
_extensions: Optional[Sequence[StreamTransformExtension]] = None, |
|
) -> None: |
|
""" |
|
Initialize the writer pointing to `path`. |
|
|
|
Args: |
|
path: directory where the checkpoint will be written to. |
|
single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True. |
|
sync_files : force files to be synced to permanent storage. Default to True. |
|
thread_count: Number of IO threads to use to write. Default to 1. |
|
per_thread_copy_ahead: How many bytes to copy from the GPU ahead of saving then. Default 10Mb. |
|
cache_staged_state_dict: Whether to cache the staged state_dict. This option decreases staging latency |
|
at the cost of increases memory usage. Additionally, if this parameter is set to True, it's the expectation |
|
that the stager is maintained and re-used for multiple dcp.async_save calls. Default to False. |
|
overwrite: Whether to allow overwriting existing checkpoints. Defaults to True. |
|
_extensions: Extensions to apply to output streams (EXPERIMENTAL) |
|
|
|
N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure. |
|
""" |
|
_FileSystemWriter.__init__( |
|
self, |
|
path=path, |
|
single_file_per_rank=single_file_per_rank, |
|
sync_files=sync_files, |
|
thread_count=thread_count, |
|
per_thread_copy_ahead=per_thread_copy_ahead, |
|
overwrite=overwrite, |
|
_extensions=_extensions, |
|
) |
|
BlockingAsyncStager.__init__( |
|
self, |
|
cache_staged_state_dict=cache_staged_state_dict, |
|
) |
|
|
|
def stage(self, state_dict: STATE_DICT_TYPE) -> STATE_DICT_TYPE: |
|
"""Override of AsyncStager.stage""" |
|
|
|
|
|
self.per_thread_copy_ahead = 0 |
|
return super().stage(state_dict) |
|
|