|
|
|
import re |
|
from typing import Callable |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
|
|
__all__: list[str] = [] |
|
|
|
|
|
class _CodeParser: |
|
def __init__(self, code_string: str): |
|
optional_ws = r"\s*" |
|
required_ws = r"\s+" |
|
template_params = r"(?P<template_params>\<.+\>)" |
|
return_type = r"(?P<return_type>\w+)" |
|
function_name = r"(?P<function_name>\w+)" |
|
function_params = r"(?P<function_params>\(.+\))" |
|
function_body = r"(?P<function_body>\{.+\})" |
|
|
|
pattern = ( |
|
optional_ws |
|
+ "template" |
|
+ optional_ws |
|
+ template_params |
|
+ optional_ws |
|
+ return_type |
|
+ required_ws |
|
+ function_name |
|
+ optional_ws |
|
+ function_params |
|
+ optional_ws |
|
+ function_body |
|
+ optional_ws |
|
) |
|
|
|
result = re.match( |
|
pattern, code_string, re.DOTALL |
|
) |
|
|
|
if result is None: |
|
raise Exception( |
|
f"Couldn't parse code, please check correctness:\n {code_string}" |
|
) |
|
|
|
self.template_params = result["template_params"] |
|
self.return_type = result["return_type"] |
|
self.function_name = result["function_name"] |
|
self.function_params = result["function_params"] |
|
self.function_body = result["function_body"] |
|
|
|
|
|
class _JittedFunction: |
|
def __init__( |
|
self, code_string: str, return_by_ref: bool, num_outputs: int, **kwargs |
|
): |
|
self.code_string = code_string |
|
|
|
assert ( |
|
return_by_ref or num_outputs == 1 |
|
), "Return by value only works for single output. " |
|
self.return_by_ref = return_by_ref |
|
self.num_outputs = num_outputs |
|
|
|
parsed_code = _CodeParser(code_string) |
|
self.kernel_name = parsed_code.function_name |
|
|
|
self.kwargs_dict = kwargs |
|
self.is_cuda_available = torch.cuda.is_available() |
|
|
|
def __call__(self, *tensors: Tensor, **kwargs): |
|
|
|
|
|
assert ( |
|
self.is_cuda_available |
|
), "Jiterator is only supported on CUDA and ROCm GPUs, none are available." |
|
|
|
assert len(tensors) <= 8, "jiterator only supports up to 8 tensor inputs." |
|
|
|
expanded_kwargs = self.kwargs_dict.copy() |
|
for key, value in kwargs.items(): |
|
if key in self.kwargs_dict: |
|
expanded_kwargs[key] = value |
|
else: |
|
raise KeyError(f"{key} is not declared in function definition") |
|
|
|
return torch._C._cuda_jiterator_compile_and_launch_kernel( |
|
self.code_string, |
|
self.kernel_name, |
|
self.return_by_ref, |
|
self.num_outputs, |
|
tensors, |
|
expanded_kwargs, |
|
) |
|
|
|
|
|
def _create_jit_fn(code_string: str, **kwargs) -> Callable: |
|
""" |
|
Create a jiterator-generated cuda kernel for an elementwise op. |
|
|
|
The code string has to be a valid CUDA function that describes the computation for a single element. The code |
|
string has to follow the c++ template pattern, as shown in the example below. This function will be inlined |
|
into elementwise kernel template, and compiled on the fly. Compiled kernel will be cached in memory, as well as |
|
local temp dir. |
|
|
|
Jiterator-generated kernels accepts noncontiguous tensors, and supports broadcasting and type promotion. |
|
|
|
Args: |
|
code_string (str): CUDA code string to be compiled by jiterator. The entry functor must return by value. |
|
kwargs (Dict, optional): Keyword arguments for generated function |
|
|
|
Example:: |
|
|
|
code_string = "template <typename T> T my_kernel(T x, T y, T alpha) { return -x + alpha * y; }" |
|
jitted_fn = create_jit_fn(code_string, alpha=1.0) |
|
a = torch.rand(3, device='cuda') |
|
b = torch.rand(3, device='cuda') |
|
# invoke jitted function like a regular python function |
|
result = jitted_fn(a, b, alpha=3.14) |
|
|
|
code_string also allows multiple function definitions, and the last function will be treated as the entry function. |
|
|
|
Example:: |
|
|
|
code_string = "template <typename T> T util_fn(T x, T y) { return ::sin(x) + ::cos(y); }" |
|
code_string += "template <typename T> T my_kernel(T x, T y, T val) { return ::min(val, util_fn(x, y)); }" |
|
jitted_fn = create_jit_fn(code_string, val=0.0) |
|
a = torch.rand(3, device='cuda') |
|
b = torch.rand(3, device='cuda') |
|
# invoke jitted function like a regular python function |
|
result = jitted_fn(a, b) # using default val=0.0 |
|
|
|
Jiterator can be used together with python registration to override an operator's cuda kernel. |
|
Following example is overriding gelu's cuda kernel with relu. |
|
|
|
Example:: |
|
|
|
code_string = "template <typename T> T my_gelu(T a) { return a > 0 ? a : 0; }" |
|
my_gelu = create_jit_fn(code_string) |
|
my_lib = torch.library.Library("aten", "IMPL") |
|
my_lib.impl('aten::gelu', my_gelu, "CUDA") |
|
# torch.nn.GELU and torch.nn.function.gelu are now overridden |
|
a = torch.rand(3, device='cuda') |
|
torch.allclose(torch.nn.functional.gelu(a), torch.nn.functional.relu(a)) |
|
|
|
.. warning:: |
|
This API is in beta and may change in future releases. |
|
|
|
.. warning:: |
|
This API only supports up to 8 inputs and 1 output |
|
|
|
.. warning:: |
|
All input tensors must live in CUDA device |
|
""" |
|
return _JittedFunction(code_string, return_by_ref=False, num_outputs=1, **kwargs) |
|
|
|
|
|
def _create_multi_output_jit_fn( |
|
code_string: str, num_outputs: int, **kwargs |
|
) -> Callable: |
|
""" |
|
Create a jiterator-generated cuda kernel for an elementwise op that supports returning one or more outputs. |
|
|
|
Args: |
|
code_string (str): CUDA code string to be compiled by jiterator. The entry functor must return value by reference. |
|
num_outputs(int): number of outputs return by the kernel |
|
kwargs (Dict, optional): Keyword arguments for generated function |
|
|
|
Example:: |
|
|
|
code_string = "template <typename T> void my_kernel(T x, T y, T alpha, T& out) { out = -x + alpha * y; }" |
|
jitted_fn = create_jit_fn(code_string, alpha=1.0) |
|
a = torch.rand(3, device='cuda') |
|
b = torch.rand(3, device='cuda') |
|
# invoke jitted function like a regular python function |
|
result = jitted_fn(a, b, alpha=3.14) |
|
|
|
.. warning:: |
|
This API is in beta and may change in future releases. |
|
|
|
.. warning:: |
|
This API only supports up to 8 inputs and 8 outputs |
|
""" |
|
return _JittedFunction( |
|
code_string, return_by_ref=True, num_outputs=num_outputs, **kwargs |
|
) |
|
|