|
|
|
import copy |
|
import inspect |
|
import itertools |
|
import warnings |
|
|
|
import torch |
|
import torch.ao.nn.quantized as nnq |
|
import torch.nn as nn |
|
from torch.ao.nn.intrinsic import _FusedModule |
|
from torch.ao.quantization.observer import _is_activation_post_process |
|
from torch.ao.quantization.qconfig import ( |
|
_activation_is_memoryless, |
|
_add_module_to_qconfig_obs_ctr, |
|
default_dynamic_qconfig, |
|
float16_dynamic_qconfig, |
|
float_qparams_weight_only_qconfig, |
|
float_qparams_weight_only_qconfig_4bit, |
|
) |
|
from torch.ao.quantization.quantization_mappings import ( |
|
_get_special_act_post_process, |
|
_has_special_act_post_process, |
|
get_default_dynamic_quant_module_mappings, |
|
get_default_qat_module_mappings, |
|
get_default_qconfig_propagation_list, |
|
get_default_static_quant_module_mappings, |
|
get_default_static_quant_reference_module_mappings, |
|
no_observer_set, |
|
) |
|
from torch.ao.quantization.stubs import DeQuantStub, QuantWrapper |
|
from torch.nn.utils.parametrize import type_before_parametrizations |
|
|
|
from .utils import get_qparam_dict, has_no_children_ignoring_parametrizations |
|
|
|
|
|
__all__ = [ |
|
"get_default_custom_config_dict", |
|
"propagate_qconfig_", |
|
"add_quant_dequant", |
|
"prepare", |
|
"quantize", |
|
"quantize_dynamic", |
|
"prepare_qat", |
|
"quantize_qat", |
|
"convert", |
|
"swap_module", |
|
] |
|
|
|
|
|
|
|
is_activation_post_process = _is_activation_post_process |
|
|
|
|
|
_DEFAULT_CUSTOM_CONFIG_DICT = { |
|
"float_to_observed_custom_module_class": { |
|
nn.LSTM: nn.quantizable.LSTM, |
|
nn.MultiheadAttention: nn.quantizable.MultiheadAttention, |
|
}, |
|
"observed_to_quantized_custom_module_class": { |
|
nn.quantizable.LSTM: nn.quantized.LSTM, |
|
nn.quantizable.MultiheadAttention: nn.quantized.MultiheadAttention, |
|
}, |
|
} |
|
|
|
|
|
def get_default_custom_config_dict(): |
|
r"""Defines the default custom config dict.""" |
|
return _DEFAULT_CUSTOM_CONFIG_DICT |
|
|
|
|
|
def _propagate_qconfig_helper( |
|
module, |
|
qconfig_dict, |
|
qconfig_parent=None, |
|
prefix="", |
|
prepare_custom_config_dict=None, |
|
): |
|
r"""This is a helper function for `propagate_qconfig_` |
|
|
|
Args: |
|
module: input module |
|
qconfig_dict: dictionary that maps from name of submodule to quantization |
|
configuration |
|
qconfig_parent: quantization config of parent module, we will fallback to |
|
this config when there is no specified config for current |
|
module |
|
prefix: corresponding prefix of the current module, used as key in |
|
qconfig_dict |
|
prepare_custom_config_dict: dictionary for custom handling of modules |
|
see docs for :func:`~torch.ao.quantization.prepare_fx` |
|
|
|
Return: |
|
None, module is modified inplace with qconfig attached |
|
""" |
|
|
|
module_qconfig = qconfig_dict.get( |
|
type_before_parametrizations(module), qconfig_parent |
|
) |
|
module_qconfig = qconfig_dict.get(prefix, module_qconfig) |
|
module_qconfig = getattr(module, "qconfig", module_qconfig) |
|
|
|
torch.ao.quantization.qconfig._assert_valid_qconfig(module_qconfig, module) |
|
|
|
qconfig_with_device_check = _add_module_to_qconfig_obs_ctr(module_qconfig, module) |
|
module.qconfig = qconfig_with_device_check |
|
|
|
for name, child in module.named_children(): |
|
module_prefix = prefix + "." + name if prefix else name |
|
|
|
if prepare_custom_config_dict is None or not ( |
|
name in prepare_custom_config_dict.get("non_traceable_module_name", []) |
|
or type(child) |
|
in prepare_custom_config_dict.get("non_traceable_module_class", []) |
|
): |
|
_propagate_qconfig_helper( |
|
child, qconfig_dict, qconfig_with_device_check, module_prefix |
|
) |
|
|
|
|
|
def propagate_qconfig_(module, qconfig_dict=None, prepare_custom_config_dict=None): |
|
r"""Propagate qconfig through the module hierarchy and assign `qconfig` |
|
attribute on each leaf module |
|
|
|
Args: |
|
module: input module |
|
qconfig_dict: dictionary that maps from name or type of submodule to |
|
quantization configuration, qconfig applies to all submodules of a |
|
given module unless qconfig for the submodules are specified (when |
|
the submodule already has qconfig attribute) |
|
prepare_custom_config_dict: dictionary for custom handling of modules |
|
see docs for :func:`~torch.ao.quantization.prepare_fx` |
|
|
|
Return: |
|
None, module is modified inplace with qconfig attached |
|
""" |
|
if qconfig_dict is None: |
|
qconfig_dict = {} |
|
if prepare_custom_config_dict is None: |
|
prepare_custom_config_dict = {} |
|
_propagate_qconfig_helper( |
|
module, qconfig_dict, prepare_custom_config_dict=prepare_custom_config_dict |
|
) |
|
|
|
|
|
def _observer_forward_hook(self, input, output): |
|
r"""Forward hook that calls observer on the output""" |
|
return self.activation_post_process(output) |
|
|
|
|
|
def _observer_forward_pre_hook(self, input): |
|
r"""Forward pre hook that calls observer on the output""" |
|
return self.activation_post_process(input[0]) |
|
|
|
|
|
def _register_activation_post_process_hook(module, pre_hook=False): |
|
assert hasattr( |
|
module, "activation_post_process" |
|
), "Expect activation_post_process attribute already attached to the module" |
|
if pre_hook: |
|
module.register_forward_pre_hook(_observer_forward_pre_hook, prepend=True) |
|
else: |
|
module.register_forward_hook(_observer_forward_hook, prepend=True) |
|
|
|
|
|
def _add_observer_( |
|
module, |
|
qconfig_propagation_list=None, |
|
non_leaf_module_list=None, |
|
device=None, |
|
custom_module_class_mapping=None, |
|
): |
|
r"""Add observer for the leaf child of the module. |
|
|
|
This function insert observer module to all leaf child module that |
|
has a valid qconfig attribute. |
|
|
|
Args: |
|
module: input module with qconfig attributes for all the leaf modules that we want to quantize |
|
qconfig_propagation_list: a list of quantizable modules that will have observers added to them |
|
if they are leaf nodes |
|
device: parent device, if any |
|
non_leaf_module_list: list of non-leaf modules we want to add observer |
|
|
|
Return: |
|
None, module is modified inplace with added observer modules and forward_hooks |
|
""" |
|
if qconfig_propagation_list is None: |
|
qconfig_propagation_list = get_default_qconfig_propagation_list() |
|
|
|
if custom_module_class_mapping is None: |
|
custom_module_class_mapping = {} |
|
|
|
|
|
if device is None: |
|
devices = _get_unique_devices_(module) |
|
assert ( |
|
len(devices) <= 1 |
|
), f"_add_observer_ only works with cpu or single-device CUDA modules, but got devices {devices}" |
|
device = next(iter(devices)) if len(devices) > 0 else None |
|
|
|
def get_activation_post_process(qconfig, device, special_act_post_process=None): |
|
activation = ( |
|
qconfig.activation() |
|
if special_act_post_process is None |
|
else special_act_post_process() |
|
) |
|
if device is not None: |
|
activation.to(device) |
|
return activation |
|
|
|
def needs_observation(m): |
|
return hasattr(m, "qconfig") and m.qconfig is not None |
|
|
|
def insert_activation_post_process(m, special_act_post_process=None): |
|
"""Adds an activation post process module and register |
|
a pre or post hook that calls the module |
|
""" |
|
|
|
if needs_observation(m) and not isinstance(m, DeQuantStub): |
|
|
|
m.add_module( |
|
"activation_post_process", |
|
get_activation_post_process( |
|
m.qconfig, device, special_act_post_process |
|
), |
|
) |
|
|
|
|
|
_register_activation_post_process_hook( |
|
m, pre_hook=_activation_is_memoryless(m.qconfig) |
|
) |
|
|
|
for name, child in module.named_children(): |
|
|
|
if type_before_parametrizations(child) in [nn.Dropout]: |
|
continue |
|
elif issubclass( |
|
type_before_parametrizations(child), (nnq.FloatFunctional, nnq.QFunctional) |
|
): |
|
if needs_observation(child): |
|
assert hasattr( |
|
child, "activation_post_process" |
|
), f"functional class {type_before_parametrizations(child)} has no pre-defined `activation_post_process`" |
|
child.activation_post_process = get_activation_post_process( |
|
child.qconfig, device |
|
) |
|
elif isinstance(child, _FusedModule): |
|
|
|
if needs_observation(child): |
|
insert_activation_post_process(child) |
|
elif ( |
|
non_leaf_module_list is not None |
|
and type_before_parametrizations(child) in non_leaf_module_list |
|
): |
|
if needs_observation(child): |
|
insert_activation_post_process(child) |
|
elif _has_special_act_post_process(child): |
|
special_act_post_process = _get_special_act_post_process(child) |
|
insert_activation_post_process(child, special_act_post_process) |
|
elif ( |
|
needs_observation(child) |
|
and type_before_parametrizations(child) in custom_module_class_mapping |
|
): |
|
observed_class = custom_module_class_mapping[ |
|
type_before_parametrizations(child) |
|
] |
|
observed_child = observed_class.from_float(child) |
|
setattr(module, name, observed_child) |
|
|
|
|
|
if not issubclass(observed_class, tuple(no_observer_set())): |
|
insert_activation_post_process(observed_child) |
|
else: |
|
_add_observer_( |
|
child, |
|
qconfig_propagation_list, |
|
non_leaf_module_list, |
|
device, |
|
custom_module_class_mapping, |
|
) |
|
|
|
|
|
|
|
if ( |
|
has_no_children_ignoring_parametrizations(module) |
|
and not isinstance(module, torch.nn.Sequential) |
|
and type_before_parametrizations(module) in qconfig_propagation_list |
|
): |
|
insert_activation_post_process(module) |
|
|
|
|
|
|
|
|
|
if ( |
|
hasattr(module, "weight_fake_quant") |
|
and not isinstance(module, torch.nn.Sequential) |
|
and type_before_parametrizations(module) in qconfig_propagation_list |
|
): |
|
insert_activation_post_process(module) |
|
|
|
|
|
def _get_unique_devices_(module): |
|
return {p.device for p in module.parameters() if p.device.type != "meta"} | { |
|
p.device for p in module.buffers() if p.device.type != "meta" |
|
} |
|
|
|
|
|
def add_quant_dequant(module): |
|
r"""Wrap the leaf child module in QuantWrapper if it has a valid qconfig |
|
Note that this function will modify the children of module inplace and it |
|
can return a new module which wraps the input module as well. |
|
|
|
Args: |
|
module: input module with qconfig attributes for all the leaf modules |
|
that we want to quantize |
|
|
|
Return: |
|
Either the inplace modified module with submodules wrapped in |
|
`QuantWrapper` based on qconfig or a new `QuantWrapper` module which |
|
wraps the input module, the latter case only happens when the input |
|
module is a leaf module and we want to quantize it. |
|
""" |
|
if ( |
|
has_no_children_ignoring_parametrizations(module) |
|
and hasattr(module, "qconfig") |
|
and module.qconfig |
|
): |
|
return QuantWrapper(module) |
|
|
|
for name, child in module.named_children(): |
|
module._modules[name] = add_quant_dequant(child) |
|
return module |
|
|
|
|
|
def prepare( |
|
model, |
|
inplace=False, |
|
allow_list=None, |
|
observer_non_leaf_module_list=None, |
|
prepare_custom_config_dict=None, |
|
): |
|
r"""Prepares a copy of the model for quantization calibration or quantization-aware training. |
|
|
|
Quantization configuration should be assigned preemptively |
|
to individual submodules in `.qconfig` attribute. |
|
|
|
The model will be attached with observer or fake quant modules, and qconfig |
|
will be propagated. |
|
|
|
Args: |
|
`model`: input model to be modified in-place |
|
`inplace`: carry out model transformations in-place, the original module is mutated |
|
`allow_list`: list of quantizable modules |
|
`observer_non_leaf_module_list`: list of non-leaf modules we want to add observer |
|
`prepare_custom_config_dict`: customization configuration dictionary for prepare function |
|
|
|
.. code-block:: python |
|
|
|
# Example of prepare_custom_config_dict: |
|
prepare_custom_config_dict = { |
|
# user will manually define the corresponding observed |
|
# module class which has a from_float class method that converts |
|
# float custom module to observed custom module |
|
"float_to_observed_custom_module_class": { |
|
CustomModule: ObservedCustomModule |
|
} |
|
} |
|
|
|
""" |
|
torch._C._log_api_usage_once("quantization_api.quantize.prepare") |
|
if prepare_custom_config_dict is None: |
|
prepare_custom_config_dict = get_default_custom_config_dict() |
|
custom_module_class_mapping = prepare_custom_config_dict.get( |
|
"float_to_observed_custom_module_class", {} |
|
) |
|
|
|
if not inplace: |
|
model = copy.deepcopy(model) |
|
|
|
|
|
qconfig_propagation_list = allow_list |
|
if allow_list is None: |
|
qconfig_propagation_list = get_default_qconfig_propagation_list() |
|
propagate_qconfig_(model, qconfig_dict=None) |
|
|
|
|
|
if not any(hasattr(m, "qconfig") and m.qconfig for m in model.modules()): |
|
warnings.warn( |
|
"None of the submodule got qconfig applied. Make sure you " |
|
"passed correct configuration through `qconfig_dict` or " |
|
"by assigning the `.qconfig` attribute directly on submodules" |
|
) |
|
|
|
_add_observer_( |
|
model, |
|
qconfig_propagation_list, |
|
observer_non_leaf_module_list, |
|
custom_module_class_mapping=custom_module_class_mapping, |
|
) |
|
return model |
|
|
|
|
|
def _remove_activation_post_process(module): |
|
|
|
|
|
if hasattr(module, "activation_post_process") and _is_activation_post_process( |
|
module.activation_post_process |
|
): |
|
delattr(module, "activation_post_process") |
|
|
|
|
|
def remove_hooks(pre_hook=False): |
|
hook_map = module._forward_pre_hooks if pre_hook else module._forward_hooks |
|
observer_hook = ( |
|
_observer_forward_pre_hook if pre_hook else _observer_forward_hook |
|
) |
|
handle_ids_to_remove = set() |
|
for handle_id, hook_fn in hook_map.items(): |
|
if hook_fn is observer_hook: |
|
handle_ids_to_remove.add(handle_id) |
|
for handle_id in handle_ids_to_remove: |
|
hook_map.pop(handle_id) |
|
|
|
remove_hooks(pre_hook=True) |
|
remove_hooks(pre_hook=False) |
|
|
|
|
|
|
|
def _remove_qconfig(module): |
|
r"""Clean up the qconfig left in the module so that new qconfig can be |
|
propagated. |
|
|
|
Args: |
|
module: module to be cleaned up |
|
""" |
|
for child in module.children(): |
|
_remove_qconfig(child) |
|
|
|
if hasattr(module, "qconfig"): |
|
del module.qconfig |
|
|
|
_remove_activation_post_process(module) |
|
|
|
|
|
def quantize(model, run_fn, run_args, mapping=None, inplace=False): |
|
r"""Quantize the input float model with post training static quantization. |
|
|
|
First it will prepare the model for calibration, then it calls |
|
`run_fn` which will run the calibration step, after that we will |
|
convert the model to a quantized model. |
|
|
|
Args: |
|
model: input float model |
|
run_fn: a calibration function for calibrating the prepared model |
|
run_args: positional arguments for `run_fn` |
|
inplace: carry out model transformations in-place, the original module is mutated |
|
mapping: correspondence between original module types and quantized counterparts |
|
|
|
Return: |
|
Quantized model. |
|
""" |
|
torch._C._log_api_usage_once("quantization_api.quantize.quantize") |
|
if mapping is None: |
|
mapping = get_default_static_quant_module_mappings() |
|
if not inplace: |
|
model = copy.deepcopy(model) |
|
model.eval() |
|
prepare(model, inplace=True) |
|
run_fn(model, *run_args) |
|
convert(model, mapping, inplace=True) |
|
return model |
|
|
|
|
|
def quantize_dynamic( |
|
model, qconfig_spec=None, dtype=torch.qint8, mapping=None, inplace=False |
|
): |
|
r"""Converts a float model to dynamic (i.e. weights-only) quantized model. |
|
|
|
Replaces specified modules with dynamic weight-only quantized versions and output the quantized model. |
|
|
|
For simplest usage provide `dtype` argument that can be float16 or qint8. Weight-only quantization |
|
by default is performed for layers with large weights size - i.e. Linear and RNN variants. |
|
|
|
Fine grained control is possible with `qconfig` and `mapping` that act similarly to `quantize()`. |
|
If `qconfig` is provided, the `dtype` argument is ignored. |
|
|
|
Args: |
|
model: input model |
|
qconfig_spec: Either: |
|
|
|
- A dictionary that maps from name or type of submodule to quantization |
|
configuration, qconfig applies to all submodules of a given |
|
module unless qconfig for the submodules are specified (when the |
|
submodule already has qconfig attribute). Entries in the dictionary |
|
need to be QConfig instances. |
|
|
|
- A set of types and/or submodule names to apply dynamic quantization to, |
|
in which case the `dtype` argument is used to specify the bit-width |
|
|
|
inplace: carry out model transformations in-place, the original module is mutated |
|
mapping: maps type of a submodule to a type of corresponding dynamically quantized version |
|
with which the submodule needs to be replaced |
|
|
|
""" |
|
torch._C._log_api_usage_once("quantization_api.quantize.quantize_dynamic") |
|
if qconfig_spec is None: |
|
if dtype == torch.qint8: |
|
qconfig_spec = { |
|
nn.Linear: default_dynamic_qconfig, |
|
nn.LSTM: default_dynamic_qconfig, |
|
nn.GRU: default_dynamic_qconfig, |
|
nn.LSTMCell: default_dynamic_qconfig, |
|
nn.RNNCell: default_dynamic_qconfig, |
|
nn.GRUCell: default_dynamic_qconfig, |
|
} |
|
elif dtype == torch.float16: |
|
qconfig_spec = { |
|
nn.Linear: float16_dynamic_qconfig, |
|
nn.LSTM: float16_dynamic_qconfig, |
|
nn.GRU: float16_dynamic_qconfig, |
|
nn.LSTMCell: float16_dynamic_qconfig, |
|
nn.RNNCell: float16_dynamic_qconfig, |
|
nn.GRUCell: float16_dynamic_qconfig, |
|
} |
|
elif dtype == torch.quint8: |
|
qconfig_spec = { |
|
nn.EmbeddingBag: float_qparams_weight_only_qconfig, |
|
nn.Embedding: float_qparams_weight_only_qconfig, |
|
} |
|
elif dtype == torch.quint4x2: |
|
qconfig_spec = { |
|
nn.EmbeddingBag: float_qparams_weight_only_qconfig_4bit, |
|
} |
|
else: |
|
raise ValueError( |
|
f"Don't know how to quantize with default settings for {dtype}. Provide full qconfig please" |
|
) |
|
elif isinstance(qconfig_spec, set): |
|
if dtype is torch.qint8: |
|
default_qconfig = default_dynamic_qconfig |
|
elif dtype is torch.float16: |
|
default_qconfig = float16_dynamic_qconfig |
|
elif dtype is torch.quint8: |
|
default_qconfig = float_qparams_weight_only_qconfig |
|
elif dtype is torch.quint4x2: |
|
default_qconfig = float_qparams_weight_only_qconfig_4bit |
|
else: |
|
raise RuntimeError( |
|
"Unknown dtype specified for quantize_dynamic: ", str(dtype) |
|
) |
|
qconfig_spec = dict(zip(qconfig_spec, itertools.repeat(default_qconfig))) |
|
|
|
if mapping is None: |
|
mapping = get_default_dynamic_quant_module_mappings() |
|
|
|
if not inplace: |
|
model = copy.deepcopy(model) |
|
model.eval() |
|
propagate_qconfig_(model, qconfig_spec) |
|
convert(model, mapping, inplace=True) |
|
return model |
|
|
|
|
|
def prepare_qat(model, mapping=None, inplace=False): |
|
r""" |
|
Prepares a copy of the model for quantization calibration or |
|
quantization-aware training and converts it to quantized version. |
|
|
|
Quantization configuration should be assigned preemptively |
|
to individual submodules in `.qconfig` attribute. |
|
|
|
Args: |
|
model: input model to be modified in-place |
|
mapping: dictionary that maps float modules to quantized modules to be |
|
replaced. |
|
inplace: carry out model transformations in-place, the original module |
|
is mutated |
|
""" |
|
torch._C._log_api_usage_once("quantization_api.quantize.prepare_qat") |
|
assert model.training, "prepare_qat only works on models in training mode" |
|
if mapping is None: |
|
mapping = get_default_qat_module_mappings() |
|
|
|
if not inplace: |
|
model = copy.deepcopy(model) |
|
|
|
propagate_qconfig_(model, qconfig_dict=None) |
|
convert(model, mapping=mapping, inplace=True, remove_qconfig=False) |
|
prepare(model, observer_non_leaf_module_list=set(mapping.values()), inplace=True) |
|
return model |
|
|
|
|
|
def quantize_qat(model, run_fn, run_args, inplace=False): |
|
r"""Do quantization aware training and output a quantized model |
|
|
|
Args: |
|
model: input model |
|
run_fn: a function for evaluating the prepared model, can be a |
|
function that simply runs the prepared model or a training |
|
loop |
|
run_args: positional arguments for `run_fn` |
|
|
|
Return: |
|
Quantized model. |
|
""" |
|
torch._C._log_api_usage_once("quantization_api.quantize.quantize_qat") |
|
if not inplace: |
|
model = copy.deepcopy(model) |
|
model.train() |
|
prepare_qat(model, inplace=True) |
|
run_fn(model, *run_args) |
|
convert(model, inplace=True) |
|
return model |
|
|
|
|
|
def convert( |
|
module, |
|
mapping=None, |
|
inplace=False, |
|
remove_qconfig=True, |
|
is_reference=False, |
|
convert_custom_config_dict=None, |
|
use_precomputed_fake_quant=False, |
|
): |
|
r"""Converts submodules in input module to a different module according to `mapping` |
|
by calling `from_float` method on the target module class. And remove qconfig at the |
|
end if remove_qconfig is set to True. |
|
|
|
Args: |
|
`module`: prepared and calibrated module |
|
`mapping`: a dictionary that maps from source module type to target |
|
module type, can be overwritten to allow swapping user defined |
|
Modules |
|
`inplace`: carry out model transformations in-place, the original module |
|
is mutated |
|
`convert_custom_config_dict`: custom configuration dictionary for convert function |
|
`use_precomputed_fake_quant`: a flag to enable use of precomputed fake quant |
|
|
|
.. code-block:: python |
|
|
|
# Example of convert_custom_config_dict: |
|
convert_custom_config_dict = { |
|
# user will manually define the corresponding quantized |
|
# module class which has a from_observed class method that converts |
|
# observed custom module to quantized custom module |
|
"observed_to_quantized_custom_module_class": { |
|
ObservedCustomModule: QuantizedCustomModule |
|
} |
|
} |
|
|
|
""" |
|
torch._C._log_api_usage_once("quantization_api.quantize.convert") |
|
if not inplace: |
|
module = copy.deepcopy(module) |
|
_convert( |
|
module, |
|
mapping, |
|
inplace=True, |
|
is_reference=is_reference, |
|
convert_custom_config_dict=convert_custom_config_dict, |
|
use_precomputed_fake_quant=use_precomputed_fake_quant, |
|
) |
|
if remove_qconfig: |
|
_remove_qconfig(module) |
|
return module |
|
|
|
|
|
def _convert( |
|
module, |
|
mapping=None, |
|
inplace=False, |
|
is_reference=False, |
|
convert_custom_config_dict=None, |
|
use_precomputed_fake_quant=False, |
|
): |
|
r"""Converts submodules in input module to a different module according to `mapping` |
|
by calling `from_float` method on the target module class |
|
|
|
Args: |
|
module: input module |
|
mapping: a dictionary that maps from source module type to target |
|
module type, can be overwritten to allow swapping user defined |
|
Modules |
|
inplace: carry out model transformations in-place, the original module |
|
is mutated |
|
is_reference: a flag to enable quantized reference module |
|
use_precomputed_fake_quant: a flag to enable use of precomputed fake quant |
|
|
|
""" |
|
if mapping is None: |
|
mapping = ( |
|
get_default_static_quant_reference_module_mappings() |
|
if is_reference |
|
else get_default_static_quant_module_mappings() |
|
) |
|
if convert_custom_config_dict is None: |
|
convert_custom_config_dict = get_default_custom_config_dict() |
|
custom_module_class_mapping = convert_custom_config_dict.get( |
|
"observed_to_quantized_custom_module_class", {} |
|
) |
|
|
|
if not inplace: |
|
module = copy.deepcopy(module) |
|
reassign = {} |
|
for name, mod in module.named_children(): |
|
|
|
|
|
if ( |
|
not isinstance(mod, _FusedModule) |
|
and type_before_parametrizations(mod) not in custom_module_class_mapping |
|
): |
|
_convert( |
|
mod, |
|
mapping, |
|
True, |
|
is_reference, |
|
convert_custom_config_dict, |
|
use_precomputed_fake_quant=use_precomputed_fake_quant, |
|
) |
|
reassign[name] = swap_module( |
|
mod, mapping, custom_module_class_mapping, use_precomputed_fake_quant |
|
) |
|
|
|
for key, value in reassign.items(): |
|
module._modules[key] = value |
|
|
|
return module |
|
|
|
|
|
def swap_module( |
|
mod, mapping, custom_module_class_mapping, use_precomputed_fake_quant=False |
|
): |
|
r"""Swaps the module if it has a quantized counterpart and it has an |
|
`observer` attached. |
|
|
|
Args: |
|
mod: input module |
|
mapping: a dictionary that maps from nn module to nnq module |
|
|
|
Return: |
|
The corresponding quantized module of `mod` |
|
""" |
|
new_mod = mod |
|
if hasattr(mod, "qconfig") and mod.qconfig is not None: |
|
swapped = False |
|
if type_before_parametrizations(mod) in custom_module_class_mapping: |
|
new_mod = custom_module_class_mapping[ |
|
type_before_parametrizations(mod) |
|
].from_observed(mod) |
|
swapped = True |
|
elif type_before_parametrizations(mod) in mapping: |
|
qmod = mapping[type_before_parametrizations(mod)] |
|
if hasattr(qmod, "_IS_REFERENCE") and qmod._IS_REFERENCE: |
|
assert mod.qconfig is not None |
|
weight_post_process = mod.qconfig.weight() |
|
weight_post_process(mod.weight) |
|
weight_qparams = get_qparam_dict(weight_post_process) |
|
new_mod = qmod.from_float(mod, weight_qparams) |
|
else: |
|
sig = inspect.signature(qmod.from_float) |
|
if "use_precomputed_fake_quant" in sig.parameters: |
|
new_mod = qmod.from_float( |
|
mod, use_precomputed_fake_quant=use_precomputed_fake_quant |
|
) |
|
else: |
|
new_mod = qmod.from_float(mod) |
|
swapped = True |
|
|
|
if swapped: |
|
|
|
for pre_hook_fn in mod._forward_pre_hooks.values(): |
|
new_mod.register_forward_pre_hook(pre_hook_fn) |
|
|
|
|
|
for hook_fn in mod._forward_hooks.values(): |
|
if hook_fn is not _observer_forward_hook: |
|
new_mod.register_forward_hook(hook_fn) |
|
|
|
|
|
devices = _get_unique_devices_(mod) |
|
assert len(devices) <= 1 or ( |
|
len(devices) == 2 and torch.device("meta") in devices |
|
), f"swap_module only works with cpu or single-device CUDA modules, but got devices {devices}" |
|
device = next(iter(devices)) if len(devices) > 0 else None |
|
if device: |
|
new_mod.to(device) |
|
return new_mod |
|
|
|
|
|
def _get_observer_dict(mod, target_dict, prefix=""): |
|
r"""Traverse the modules and save all observers into dict. |
|
This is mainly used for quantization accuracy debug |
|
Args: |
|
mod: the top module we want to save all observers |
|
prefix: the prefix for the current module |
|
target_dict: the dictionary used to save all the observers |
|
""" |
|
|
|
def get_prefix(prefix): |
|
return prefix if prefix == "" else prefix + "." |
|
|
|
if hasattr(mod, "activation_post_process"): |
|
target_dict[ |
|
get_prefix(prefix) + "activation_post_process" |
|
] = mod.activation_post_process |
|
for name, child in mod.named_children(): |
|
module_prefix = get_prefix(prefix) + name if prefix else name |
|
_get_observer_dict(child, target_dict, module_prefix) |
|
|