jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# mypy: allow-untyped-defs
from __future__ import annotations
import contextlib
import dataclasses
import enum
import functools
import logging
import re
import threading
import traceback
import unittest.mock
import weakref
from abc import abstractmethod
from contextlib import contextmanager
from dataclasses import dataclass
from typing import (
Any,
Callable,
Generic,
NamedTuple,
Optional,
TYPE_CHECKING,
TypeVar,
Union,
)
import torch
from torch.utils import _pytree as pytree
from torch.utils._backport_slots import dataclass_slots
from torch.utils._traceback import CapturedTraceback, format_frame
from torch.utils.weak import WeakTensorKeyDictionary
log = logging.getLogger(__name__)
if TYPE_CHECKING:
import sympy
"""
torch._guards is the definitional source of truth for general purpose guard structures.
An important thing to keep in mind here is the preservation of layering. There should be no dynamo notions,
and no guard installation notions here.
"""
COMPILE_ID_PATTERN = re.compile(r"^(?P<frame_id>\d+)/(?P<frame_compile_id>\d+)$")
CA_COMPILE_ID_PATTERN = re.compile(
r"^!(?P<compiled_autograd_id>\d+)(?:/(?P<frame_id>\d+)/(?P<frame_compile_id>\d+))?$"
)
# [Note: Updating CompiledId]
#
# CompiledId represents a unique program-level identifier, and we want to keep that
# property as the codebase evolves. This property is relied on even outside of the pytorch
# repo, e.g. tlparse or other internal tooling. The in-memory format can be freely changed,
# as those dependencies only consume the string serialization.
#
# The string form should be:
# 1. Program-level uid: CompileId can uniquely identify a compiled graph.
# 2. Storage efficient: This object is logged in nearly every entry. We should elide symbols when possible.
# 3. Compact: The string form is directly displayed by some tools. Special symbols are okay.
# TODO: mark as kw_only=True once we drop support for <Python 3.10
@dataclass(frozen=True)
class CompileId:
frame_id: Optional[int]
# This id is per-frame, and counts how many times we've compiled this
# frame. This could have been a global id but having this be per-frame
# gives you a better intuitive sense for how many recompiles have occurred
# so far.
frame_compile_id: Optional[int]
# torch.compiling a compiled autograd graph
compiled_autograd_id: Optional[int] = None
# TODO: consider also tracking the recompilation count
# See Note: Updating CompileId
def __str__(self):
# NOTE: Keep this in sync with both from_string and the tlparse repo
if self.compiled_autograd_id is not None:
assert (self.frame_id is None) == (self.frame_compile_id is None)
frame_str = ""
if self.frame_id is not None:
frame_str = f"/{self.frame_id}/{self.frame_compile_id}"
return f"!{self.compiled_autograd_id}{frame_str}"
else:
assert self.frame_id is not None and self.frame_compile_id is not None
return f"{self.frame_id}/{self.frame_compile_id}"
@classmethod
def from_string(cls, compile_id: Optional[str]):
"""
Factory method that creates a CompileId from its string representation.
Keep this in sync with the __str__ method.
"""
if compile_id is None:
return None
try:
for pattern in (COMPILE_ID_PATTERN, CA_COMPILE_ID_PATTERN):
if match := pattern.match(compile_id):
groups = match.groupdict()
for k, v in groups.items():
if v is not None:
groups[k] = int(v)
return cls(**groups) # type: ignore[arg-type]
else:
raise ValueError
except Exception as e:
raise ValueError(f"Invalid compile_id '{compile_id}'") from e
class TraceId(NamedTuple):
compile_id: CompileId
# This starts off as 0, and every time we restart analysis it goes
# up by one
attempt: int
def __str__(self):
# Keep this in sync with tlparse repo
if self.attempt == 0:
return str(self.compile_id)
else:
return f"{self.compile_id}_{self.attempt}"
class GuardSource(enum.Enum):
LOCAL = 0
GLOBAL = 1
LOCAL_SPECIALIZED_NN_MODULE = 2
GLOBAL_SPECIALIZED_NN_MODULE = 3
CONSTANT = 4
RANDOM_VALUE = 5
SHAPE_ENV = 6
LOCAL_FSDP_MODULE = 7
GLOBAL_FSDP_MODULE = 8
BACKWARD_STATE = 9
EPHEMERAL = 10
SYNTHETIC_LOCAL = 11
LOCAL_UNSPECIALIZED_NN_MODULE = 12
GLOBAL_UNSPECIALIZED_NN_MODULE = 13
LOCAL_UNSPECIALIZED_BUILTIN_NN_MODULE = 14
GLOBAL_UNSPECIALIZED_BUILTIN_NN_MODULE = 15
def is_fsdp_module(self) -> bool:
return self in (GuardSource.GLOBAL_FSDP_MODULE, GuardSource.LOCAL_FSDP_MODULE)
def is_specialized_nn_module(self) -> bool:
import torch._dynamo.config as config
if config._unsafe_skip_fsdp_module_guards:
return (
self
in (
GuardSource.GLOBAL_SPECIALIZED_NN_MODULE,
GuardSource.LOCAL_SPECIALIZED_NN_MODULE,
)
or self.is_fsdp_module()
)
return self in (
GuardSource.GLOBAL_SPECIALIZED_NN_MODULE,
GuardSource.LOCAL_SPECIALIZED_NN_MODULE,
)
def is_unspecialized_nn_module(self) -> bool:
return self in (
GuardSource.GLOBAL_UNSPECIALIZED_NN_MODULE,
GuardSource.LOCAL_UNSPECIALIZED_NN_MODULE,
GuardSource.GLOBAL_UNSPECIALIZED_BUILTIN_NN_MODULE,
GuardSource.LOCAL_UNSPECIALIZED_BUILTIN_NN_MODULE,
)
def is_unspecialized_builtin_nn_module(self) -> bool:
return self in (
GuardSource.GLOBAL_UNSPECIALIZED_BUILTIN_NN_MODULE,
GuardSource.LOCAL_UNSPECIALIZED_BUILTIN_NN_MODULE,
)
def is_local(self):
return self in (
GuardSource.LOCAL,
GuardSource.LOCAL_SPECIALIZED_NN_MODULE,
GuardSource.LOCAL_FSDP_MODULE,
GuardSource.LOCAL_UNSPECIALIZED_NN_MODULE,
GuardSource.LOCAL_UNSPECIALIZED_BUILTIN_NN_MODULE,
)
"""
Base class for a "GuardBuilder" role.
The GuardBuilderBase role is to represent a scope within which to build a guard. The name is a little
confusing, as its not a builder, but for the sake of avoiding a lot of renames and keeping the original reference
to torchdynamo's GuardBuilder.
Note: create_fn is invoked with a GuardBuilderBase and a Guard. A GuardBuilder is chosen based
on GuardSource's select function.
There is value in keeping this GuardBuilderBase empty to keep layering clean.
"""
class GuardBuilderBase:
pass
@dataclasses.dataclass(frozen=True)
class SLoc:
framework_loc: Optional[Union[traceback.FrameSummary, str]]
maybe_user_loc: Optional[str]
def __str__(self):
floc = (
self.framework_loc
if isinstance(self.framework_loc, str)
else format_frame(self.framework_loc)
)
if self.maybe_user_loc is not None:
return f"{self.maybe_user_loc} ({floc})"
else:
return f"({floc})"
class ShapeGuard(NamedTuple):
expr: sympy.logic.boolalg.Boolean
sloc: SLoc
size_oblivious: bool
@dataclass_slots
@dataclasses.dataclass
class Guard:
# originating_source is the source that called the make_guard method to
# construct this guard object. The property name specifies what exactly it
# is the guard is guarding on. The meaning of the name is dependent on the
# create_fn; you must look at the use-site inside create_fn to know what
# name means.
#
# That being said, although you might think this is just a "name", name is
# usually an arbitrary Python expression that will be evaluated with all
# globals (and locals, if you create a LOCAL guard) to extract the Python
# object that we want to perform guard tests on. This evaluation
# typically happens in GuardBuilder.eval. In these cases, name is
# typically produced by originating_source.name() (not to be confused with
# GuardSource - the property source).
#
# Occasionally, name is not a valid Python expression; sometimes
# it is meaningless. Example create_fns that are like this include
# GRAD_MODE and SHAPE_ENV.
originating_source: Source
create_fn: Callable[[GuardBuilderBase, Guard], None]
# Export only. These values are written to at time of guard check_fn creation.
guard_types: Optional[list[str]] = None
code_list: Optional[list[str]] = None
obj_weakref: Optional[object] = None
guarded_class_weakref: Optional[type] = None
stack: Optional[CapturedTraceback] = None
user_stack: Optional[traceback.StackSummary] = None
_hash: Optional[int] = None
def __hash__(self):
if self._hash is None:
self._hash = hash((self.name, self.source, id(self.create_fn)))
return self._hash
def sort_key(self):
# Put the duplicate input guards at the end. The duplicate guards have
# two sources while guard.name only considers one source.
is_duplicate_input = (
isinstance(self.create_fn, functools.partial)
and self.create_fn.func is torch._dynamo.guards.GuardBuilder.DUPLICATE_INPUT
)
return (
is_duplicate_input,
self.source.value if self.source else -1,
len(self.name),
self.name,
self.inner_create_fn().__code__.co_firstlineno,
)
def __lt__(self, other):
return self.sort_key() < other.sort_key()
def inner_create_fn(self):
if isinstance(self.create_fn, functools.partial):
return self.create_fn.func
else:
return self.create_fn
@property
def name(self) -> str:
return self.originating_source.name()
@property
def source(self) -> GuardSource:
return self.originating_source.guard_source()
@staticmethod
def weakref_to_str(obj_weakref):
"""
This is a workaround of a Python weakref bug.
`obj_weakref` is instance returned by `weakref.ref`,
`str(obj_weakref)` is buggy if the original obj overrides __getattr__, e.g:
class MyConfig(dict):
def __getattr__(self, x):
return self[x]
obj = MyConfig(offset=5)
obj_weakref = weakref.ref(obj)
str(obj_weakref) # raise error: KeyError: '__name__'
"""
if isinstance(obj_weakref, weakref.ReferenceType):
obj = obj_weakref()
if obj is not None:
return f"<weakref at {hex(id(obj_weakref))}; to '{obj.__class__.__name__}' at {hex(id(obj))}>"
else:
return f"<weakref at {hex(id(obj_weakref))}; dead>"
else:
return str(obj_weakref)
def __repr__(self):
s = f"""
{self.source.name.lower() if self.source else ""} {repr(self.name)} {self.inner_create_fn().__name__}
{{
'guard_types': {self.guard_types},
'code': {self.code_list},
'obj_weakref': {self.weakref_to_str(self.obj_weakref)}
'guarded_class': {self.guarded_class_weakref}
}}
"""
return s
def __str__(self):
output = f"Name: {repr(self.name)}\n"
source = self.source.name.lower() if self.source else ""
output += f" Source: {source}\n"
output += f" Create Function: {self.inner_create_fn().__name__}\n"
output += f" Guard Types: {self.guard_types}\n"
output += f" Code List: {self.code_list}\n"
output += f" Object Weakref: {self.weakref_to_str(self.obj_weakref)}\n"
output += f" Guarded Class Weakref: {self.guarded_class_weakref}\n"
return output
def create(self, builder: GuardBuilderBase):
try:
return self.create_fn(builder, self)
except Exception:
log.exception("Error while creating guard:\n%s", str(self).rstrip())
if self.stack:
log.error("Created at:\n%s", "".join(self.stack.format()[-4:]).rstrip())
raise
def is_specialized_nn_module(self):
return self.source.is_specialized_nn_module()
def is_fsdp_module(self):
return self.source.is_fsdp_module()
def is_local(self):
return self.source.is_local()
def set_export_info(self, guard_type, guarded_class, code_list, obj_weakref):
if not self.guard_types:
self.guard_types = []
self.guard_types.append(guard_type)
assert self.guarded_class_weakref in (
guarded_class,
None,
), "Guarded class id must be identical, or None"
self.guarded_class_weakref = guarded_class
if not self.code_list:
self.code_list = code_list
else:
self.code_list.extend(code_list)
# Some objects are ephemeral, e.g., list[slice(1, 2)]. If we have
# multiple guards on the same object, the weakref can die between the
# invocation of set_export_info calls. So a dead weakref is also
# acceptable.
assert (
self.obj_weakref in (obj_weakref, None)
or callable(self.obj_weakref)
and self.obj_weakref() is None
), "Guarded object must be identical, None or ephemeral (dead weakref)"
self.obj_weakref = obj_weakref
T = TypeVar("T")
"""
Parent structure for guard env expressions.
A GuardEnvExpr can have any subtype.
Note: All subtypes must be handled exhaustively in
torch._dynamo.guards._parse_guard_env_guards to avoid a RuntimeError.
"""
@dataclasses.dataclass
class GuardEnvExpr:
pass
"""
A class representing a pair of duplicate inputs.
input_pos_a and input_pos_b are input positions we have deduped.
"""
@dataclasses.dataclass
class DuplicateInputs(GuardEnvExpr):
input_source_a: Source
input_source_b: Source
def __post_init__(self):
assert self.input_source_a != self.input_source_b
"""
A class representing storage overlap relations among inputs that aliases the same storage.
Given that a set of tensors alias the same storage, this guard checks whether they actually
have overlapping storages.
While non_overlapping_sources represent input tensors that definitely don't have any storage
overlapping with any other input, overlapping_sources represent tensors that either:
1. Do overlap some other input tensor
2. Might not overlap some other input tensor, but we are not sure
"""
@dataclasses.dataclass
class StorageOverlap(GuardEnvExpr):
overlapping_sources: list[Source]
non_overlapping_sources: list[Source]
"""
Checkpointable is an interface for driving state snapshotting, left purposely vague for now.
copy_graphstate() -> T, a somewhat legacy name, is expected to emit a snapshot of any type that
can also be taken in at restore_graphstate(T) calls.
When to snapshot, is, at the moment, an implementation detail of upstream callers. Checkpointable
does not provide any garuantees around consistency, idempotency, or safety of calling its APIs, yet.
In the future, it will have a closer coupling to a generic Checkpoint management system.
"""
class Checkpointable(Generic[T]):
@abstractmethod
def copy_graphstate(self) -> T: ...
@abstractmethod
def restore_graphstate(self, state: T): ...
class GuardsCheckpointState:
"""
The GuardCheckpointState - it is the T of Checkpointable[T] for GuardsContext
"""
dynamo_guards: set[Guard] = set()
def __init__(self, dynamo_guards):
self.dynamo_guards = dynamo_guards
def diff(self, other):
"""
Produces a delta against another GuardsCheckpointState.
Returns None if no delta is found, otherwise, return a set() of mismatched
Guard type objects.
"""
r = self.dynamo_guards.difference(other.dynamo_guards)
if len(r) == 0:
return None
return r
def __eq__(self, other):
return self.diff(other) is None
class ModuleContextCheckpointState:
nn_modules: dict[str, torch.nn.Module] = {}
def __init__(self, nn_modules):
self.nn_modules = nn_modules
def diff(self, other):
"""
Produces a delta against another ModuleContextCheckpointState.
Returns None if no delta is found, otherwise, return a set() of mismatched
module key names.
"""
r = set(self.nn_modules.keys()).difference(set(other.nn_modules.keys()))
if len(r) == 0:
return None
return r
def __eq__(self, other):
return self.diff(other) is None
class ModuleContext(Checkpointable[ModuleContextCheckpointState]):
def __init__(self) -> None:
self.nn_modules: dict[str, Any] = {}
def copy_graphstate(self):
return ModuleContextCheckpointState(dict(self.nn_modules))
def restore_graphstate(self, state):
assert isinstance(state, ModuleContextCheckpointState)
self.nn_modules = state.nn_modules
class GlobalContextCheckpointState:
global_state: dict[str, tuple[Callable, ...]] = {}
def __init__(self, global_states):
self.global_state = global_states
def diff(self, other):
"""
Produces a delta against another GlobalContextCheckpointState.
Returns None if no delta is found, otherwise, return a set() of mismatched
global key names.
"""
r = set(self.global_state.keys()).difference(set(other.global_state.keys()))
if len(r) == 0:
return None
return r
def __eq__(self, other):
return self.diff(other) is None
class GlobalContext(Checkpointable[GlobalContextCheckpointState]):
"""
This keeps track of the global torch state during tracing of a function.
For example, torch.is_grad_enabled.
"""
_supported_global_states = {
"grad_enabled",
"torch_function_enabled",
"autocast_enabled",
"autocast_cpu_enabled",
"autocast_gpu_dtype",
"autocast_cpu_dtype",
"autocast_cache_enabled",
}
def __init__(self) -> None:
self.global_state: dict[str, tuple[Callable, ...]] = {}
def copy_graphstate(self):
return GlobalContextCheckpointState(dict(self.global_state))
def restore_graphstate(self, state):
assert isinstance(state, GlobalContextCheckpointState)
self.global_state = state.global_state
assert (
len(self.global_state) == len(self._supported_global_states)
and set(self.global_state.keys()) == self._supported_global_states
), "Global state mismatch"
for func, args in self.global_state.values():
func(args)
"""
A GuardsContext is a checkpointable representation of all the guards in the current tracing
context. It's lifecycle is bound 1:1 to the tracing context, and it should never be instantiated
directly outside of it. For passing around internal state representations of this object,
prefer to extract them with copy_graphstate to produce a GuardsCheckpointState.
"""
# Like a Set[Guard] but will record the user stack on all guards at the
# time they were installed at their destination
class GuardsSet:
def __init__(self, inner=None):
if inner is None:
inner = set()
self.inner = inner
def __iter__(self):
return iter(self.inner)
def __len__(self):
return len(self.inner)
# Subtraction along with bool is typically used to determine the delta of
# added guards between checkpoints for higher order ops
def __sub__(self, other):
return GuardsSet(self.inner - other.inner)
def __bool__(self):
return bool(self.inner)
def add(self, guard: Guard, *, collect_debug_stack=True, skip=0):
if guard in self.inner:
return
if collect_debug_stack:
if guard.stack is None:
guard.stack = CapturedTraceback.extract(skip=1 + skip)
if guard.user_stack is None:
guard.user_stack = TracingContext.extract_stack()
self.inner.add(guard)
def update(self, *others: set[Guard]):
for o in others:
for g in o:
self.add(g, skip=1)
def remove_guards_with_source(self, source):
"""Delete all guards with a given source"""
self.inner = {g for g in self.inner if g.originating_source != source}
class GuardsContext(Checkpointable[GuardsCheckpointState]):
def __init__(self) -> None:
self.dynamo_guards: GuardsSet = GuardsSet()
self.aotautograd_guards: list[GuardEnvExpr] = []
def copy_graphstate(self):
return GuardsCheckpointState(set(self.dynamo_guards.inner))
def restore_graphstate(self, state):
# NB: "steals" the passed in state
assert isinstance(state, GuardsCheckpointState)
self.dynamo_guards = GuardsSet(state.dynamo_guards)
class HopSubgraphCache:
@abstractmethod
def add_dynamo_identifier(self, cache_key: str, identifier: str): ...
@abstractmethod
def get_dynamo_identifier(self, cache_key: str) -> Optional[str]: ...
@abstractmethod
def add_autograd_key_entry(self, identifier: str, key: Callable): ...
@abstractmethod
def get_autograd_key_entry(self, identifier: str): ...
@abstractmethod
def add_proxy_dispatch_entry(self, identifier: str, key: Callable): ...
@abstractmethod
def get_proxy_dispatch_entry(self, identifier: str): ...
class InvokeSubgraphCache(HopSubgraphCache):
def __init__(self) -> None:
self.autograd_cache: dict[str, Callable] = {}
self.proxy_dispatch_cache: dict[str, Callable] = {}
self.dynamo_identifiers: dict[str, str] = {}
def add_dynamo_identifier(self, cache_key: str, identifier: str):
self.dynamo_identifiers[cache_key] = identifier
def get_dynamo_identifier(self, cache_key: str) -> Optional[str]:
return self.dynamo_identifiers.get(cache_key, None)
def add_autograd_key_entry(self, identifier: str, key: Callable):
self.autograd_cache[identifier] = key
def get_autograd_key_entry(self, identifier: str):
return self.autograd_cache.get(identifier, None)
def add_proxy_dispatch_entry(self, identifier: str, key: Callable):
self.proxy_dispatch_cache[identifier] = key
def get_proxy_dispatch_entry(self, identifier: str):
return self.proxy_dispatch_cache.get(identifier, None)
class HopDispatchSetCache:
def __init__(self) -> None:
# Delayed import to avoid circular dependency
from torch._higher_order_ops.invoke_subgraph import invoke_subgraph
self.hop_cache_map = {invoke_subgraph: InvokeSubgraphCache()}
def get_cache(
self, op: torch._ops.HigherOrderOperator
) -> Optional[HopSubgraphCache]:
if op not in self.hop_cache_map:
return None
return self.hop_cache_map[op] # type: ignore[index]
_TLS = threading.local()
"""
TracingContext is the source of truth for all currently accumulated information
needed to trace. Its lifecycle is kept 1:1 when using TorchDynamo, but other systems
are open to managing their own TracingContext with that in mind.
The purpose of TracingContext is not to be a dumping ground, or god object, but rather to avoid
having to plumb complex subsystems across multiple verticals.
Ex: A common example is guard accumulation between dynamo, shape_env, aot_autograd, and inductor.
Accessing the current tracing context via
TracingContext.get() allows users to accumulate their own guards for processing, without needing to know how
to plumb objects back up to where frame interpretation happened.
Note that you can end up with multiple TracingContext for a single compilation
of a frame, as we reset the TracingContext whenever we restart analysis.
CompileContext is a more overarching context that encompasses multiple restarts.
"""
class CompileContext:
@staticmethod
def get() -> CompileContext:
assert _TLS.compile_context is not None
return _TLS.compile_context
@staticmethod
def try_get() -> Optional[CompileContext]:
return getattr(_TLS, "compile_context", None)
def __init__(self, compile_id):
assert compile_id is None or isinstance(compile_id, CompileId)
self.compile_id: Optional[CompileId] = compile_id
self.attempt = 0
# Verbose ShapeEnv guards produced.
self.shape_env_guards: list[str] = []
@staticmethod
def current_compile_id():
self = CompileContext.try_get()
if self is None:
return None
return self.compile_id
@staticmethod
def current_trace_id():
self = CompileContext.try_get()
if self is None:
return None
if self.compile_id is None:
return None
return TraceId(self.compile_id, self.attempt)
class TracingContext:
"""
Provides the currently installed TracingContext, or None.
Note that it is a staticmethod, and invocations outside of `with tracing()` (see below), are valid but
will return None.
"""
@staticmethod
def try_get() -> Optional[TracingContext]:
return getattr(_TLS, "tracing_context", None)
@staticmethod
def get() -> TracingContext:
if ctx := TracingContext.try_get():
return ctx
raise RuntimeError(
"TracingContext.get() must be called within an ongoing trace."
)
def __init__(self, fake_mode):
self.guards_context = GuardsContext()
self.module_context = ModuleContext()
self.global_context = GlobalContext()
self.fake_mode = fake_mode
self.frame_summary_stack = []
# This is morally part of frame_summary_stack, but it is kept separate
# for clarity. As we process a frame, this variable gets updated
# to keep track of what line we are in the function. We make a
# function call, this gets cleared and the frame location is pushed
# to frame_summary_stack (prepping this variable for the inner frame's
# progress)
self.loc_in_frame = None
# this is only set after aot_autograd
self.fw_metadata = None
# this is only set after aot_autograd
self.aot_graph_name = None
self.params_flat = None
self.params_flat_unwrap_subclasses = None
self.params_unwrapped_to_flat_index = None
# this is for extended return calling convention from backend
# compiler to aot_autograd
# Per output, what the compiler specified stride of the output is,
# or None if no stride is known. This is always the HINT, it
# is never a SymInt (it would be better if it was a SymInt, but
# I can't conveniently get this from Inductor atm. Also, be
# careful not to accidentally induce guards on the SymInt if
# you ever do change this in aot_autograd.py; you should check
# on permutations preferentially.)
self.output_strides: Optional[list[Optional[tuple[int, ...]]]] = None
# When this is True, whenever we encounter an int in Dynamo tracing,
# we will (1) force unspec it and (2) force it as a size-like unbacked
# integer. This is currently used when processing certain lists of
# ints that are known to be size-like and may have 0/1 entries that we
# must not specialize on.
self.force_unspec_int_unbacked_size_like = False
# See note [Tensor Fakification and Symbol Caching]
self.tensor_to_context = WeakTensorKeyDictionary()
# If this true, Aot Autograd will return output Fake Tensors with appropiate
# meta on the first invocation
# see note: [Returning Fake Tensors on First AOT Autograd Call]
self.fakify_first_call = False
self.hop_dispatch_set_cache = HopDispatchSetCache()
def clear(self):
# Look at the note in output_graph.py in function `save_global_state`
# for the context on clearing global context.
self.global_context.global_state = {}
@staticmethod
@contextmanager
def patch(**kwargs):
prior = {}
ctx = TracingContext.get()
for key in kwargs.keys():
# KeyError on invalid entry
prior[key] = getattr(ctx, key)
for key, val in kwargs.items():
setattr(ctx, key, val)
try:
yield
finally:
for key, val in prior.items():
setattr(ctx, key, val)
@staticmethod
def extract_stack():
self = TracingContext.try_get()
if self is None:
return traceback.StackSummary()
stack = self.frame_summary_stack
if self.loc_in_frame is not None:
stack = stack + [self.loc_in_frame]
return traceback.StackSummary.from_list(stack)
# Call this when you want to call into some code that isn't necessarily
# associated with the current frame state
@staticmethod
@contextlib.contextmanager
def clear_frame():
tc = TracingContext.get()
with (
unittest.mock.patch.object(tc, "frame_summary_stack", []),
unittest.mock.patch.object(tc, "loc_in_frame", None),
):
try:
yield
except Exception as e:
# Prevent real_stack from getting attached
#
# The invariant is that if an Exception as real_stack, we've
# appropriately attached a user stack and we no longer need to
# attach anything. Because we cannot conveniently interpose
# when an exception is thrown, we instead interpose everywhere
# we set what the user stack is set (using the context
# manager). However, our compiler stack does "tail calls"
# (when it calls into user compiler), at which point the
# parent exception frames would incorrectly attach an
# incorrect frame.
#
# However, if, somehow, someone raised an exception with this
# scope that had a stack (for example, because they are
# restoring the user stack state appropriately as they process
# node by node), we should respect it. Thus, we cannot
# unconditionally set None.
if not hasattr(e, "real_stack"):
e.real_stack = None # type: ignore[attr-defined]
raise
@staticmethod
@contextlib.contextmanager
def current_frame(frame_summary):
# frame_summary can be None to solely take advantage of real_stack
# attachment to thrown exceptions
tc = TracingContext.get()
if frame_summary is not None:
tc.frame_summary_stack.append(frame_summary)
old = tc.loc_in_frame
tc.loc_in_frame = None
try:
yield
except Exception as e:
if not hasattr(e, "real_stack"):
e.real_stack = tc.extract_stack() # type: ignore[attr-defined]
raise
finally:
if frame_summary is not None:
tc.frame_summary_stack.pop()
tc.loc_in_frame = old
@staticmethod
@contextlib.contextmanager
def report_output_strides():
tc = TracingContext.try_get()
if tc is None:
yield None
return
old_output_strides = tc.output_strides
tc.output_strides = []
try:
yield tc.output_strides
finally:
tc.output_strides = old_output_strides
@staticmethod
def set_current_loc(filename, lineno, frame_name):
TracingContext.get().loc_in_frame = traceback.FrameSummary(
filename, lineno, frame_name, lookup_line=False
)
@contextmanager
def compile_context(context: Optional[CompileContext]):
old_context = getattr(_TLS, "compile_context", None)
_TLS.compile_context = context
try:
yield context
finally:
_TLS.compile_context = old_context
@contextmanager
def tracing(context: Optional[TracingContext]):
"""
This function installs the passed in tracing context as a dynamic scoped
global variable.
Calls to TracingContext.get() while not under a `with tracing()` context
will return None.
"""
old_context = getattr(_TLS, "tracing_context", None)
_TLS.tracing_context = context
try:
yield context
except Exception as e:
if not hasattr(e, "real_stack") and context is not None:
e.real_stack = context.extract_stack() # type: ignore[attr-defined]
raise
finally:
if (
context is not None
and context.fake_mode is not None
and context.fake_mode.shape_env is not None
):
context.fake_mode.shape_env.cleanup()
_TLS.tracing_context = old_context
# Subclasses can be found in torch/_dynamo/source.py
# TODO(voz): Consider a toplevel torch/_source.py
@dataclasses.dataclass(frozen=True)
class Source:
def is_dict_key(self):
return False
def is_ephemeral(self):
return False
def reconstruct(self, codegen):
raise NotImplementedError
def guard_source(self) -> GuardSource:
raise NotImplementedError
def name(self) -> str:
raise NotImplementedError
def make_guard(self, fn) -> Guard:
if self.guard_source() is GuardSource.CONSTANT:
raise NotImplementedError
return Guard(self, fn)
def is_specialized_nn_module(self) -> bool:
return self.guard_source().is_specialized_nn_module()
def subguards_allowed(self):
"""True if you can guard on attributes of this"""
return self.guard_source() != GuardSource.SYNTHETIC_LOCAL
# Subclasses can be found in torch/_dynamo/source.py
@dataclasses.dataclass(frozen=True)
class ChainedSource(Source):
base: Source
def is_dict_key(self):
# Recurse until you either hit a ConstDictKey or a Source
return self.base.is_dict_key()
def is_ephemeral(self):
return self.base.is_ephemeral()
def get_base(self) -> Source:
current: Source = self
while isinstance(current, ChainedSource):
current = current.base
return current
def detect_fake_mode(inputs: Any = None):
"""
Attempts to "detect" what the current fake mode is. If there is one ambiently
available from TracingContext, we preferentially use that. Otherwise, we
heuristically detect the fake mode via the following sources, in order of
priority:
- Currently active fake mode on stack
- Fake mode associated with passed in tensors (inputs does not
have to be flattened)
"""
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
fake_modes = []
if context := TracingContext.try_get():
fake_mode = context.fake_mode
if fake_mode is not None:
fake_modes.append((fake_mode, "tracing context", 0))
from torch.utils._python_dispatch import _get_current_dispatch_mode_stack
for i, m in enumerate(reversed(_get_current_dispatch_mode_stack())):
if isinstance(m, FakeTensorMode):
fake_modes.append((m, "active fake mode", i))
flat_inputs = pytree.tree_leaves(inputs)
for i, flat_input in enumerate(flat_inputs):
if isinstance(flat_input, FakeTensor):
fake_modes.append((flat_input.fake_mode, "fake tensor input", i))
if fake_modes:
fake_mode, desc1, i1 = fake_modes[0]
for m, desc2, i2 in fake_modes[1:]:
assert fake_mode is m, (
f"fake mode ({fake_mode}) from {desc1} {i1} doesn't match mode ({m}) from {desc2} {i2}\n\n"
f"fake mode from {desc1} {i1} allocated at:\n{fake_mode.stack}\n"
f"fake mode from {desc2} {i2} allocated at:\n{m.stack}"
)
return fake_mode
else:
return None
def active_fake_mode():
"""
Inspects the dispatch mode stack for an active fake mode and returns it.
Returns None if no fake mode is active.
"""
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.utils._python_dispatch import _get_current_dispatch_mode_stack
for _, m in enumerate(reversed(_get_current_dispatch_mode_stack())):
if isinstance(m, FakeTensorMode):
return m
return None