|
""" Selective Kernel Networks (ResNet base) |
|
|
|
Paper: Selective Kernel Networks (https://arxiv.org/abs/1903.06586) |
|
|
|
This was inspired by reading 'Compounding the Performance Improvements...' (https://arxiv.org/abs/2001.06268) |
|
and a streamlined impl at https://github.com/clovaai/assembled-cnn but I ended up building something closer |
|
to the original paper with some modifications of my own to better balance param count vs accuracy. |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import math |
|
|
|
from torch import nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from .helpers import build_model_with_cfg |
|
from .layers import SelectiveKernel, ConvNormAct, ConvNormActAa, create_attn |
|
from .registry import register_model |
|
from .resnet import ResNet |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'conv1', 'classifier': 'fc', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = { |
|
'skresnet18': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth'), |
|
'skresnet34': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth'), |
|
'skresnet50': _cfg(), |
|
'skresnet50d': _cfg( |
|
first_conv='conv1.0'), |
|
'skresnext50_32x4d': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth'), |
|
} |
|
|
|
|
|
class SelectiveKernelBasic(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__( |
|
self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, |
|
sk_kwargs=None, reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, |
|
norm_layer=nn.BatchNorm2d, attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): |
|
super(SelectiveKernelBasic, self).__init__() |
|
|
|
sk_kwargs = sk_kwargs or {} |
|
conv_kwargs = dict(act_layer=act_layer, norm_layer=norm_layer) |
|
assert cardinality == 1, 'BasicBlock only supports cardinality of 1' |
|
assert base_width == 64, 'BasicBlock doest not support changing base width' |
|
first_planes = planes // reduce_first |
|
outplanes = planes * self.expansion |
|
first_dilation = first_dilation or dilation |
|
|
|
self.conv1 = SelectiveKernel( |
|
inplanes, first_planes, stride=stride, dilation=first_dilation, |
|
aa_layer=aa_layer, drop_layer=drop_block, **conv_kwargs, **sk_kwargs) |
|
self.conv2 = ConvNormAct( |
|
first_planes, outplanes, kernel_size=3, dilation=dilation, apply_act=False, **conv_kwargs) |
|
self.se = create_attn(attn_layer, outplanes) |
|
self.act = act_layer(inplace=True) |
|
self.downsample = downsample |
|
self.drop_path = drop_path |
|
|
|
def zero_init_last(self): |
|
nn.init.zeros_(self.conv2.bn.weight) |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
if self.se is not None: |
|
x = self.se(x) |
|
if self.drop_path is not None: |
|
x = self.drop_path(x) |
|
if self.downsample is not None: |
|
shortcut = self.downsample(shortcut) |
|
x += shortcut |
|
x = self.act(x) |
|
return x |
|
|
|
|
|
class SelectiveKernelBottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__( |
|
self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64, sk_kwargs=None, |
|
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, |
|
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None): |
|
super(SelectiveKernelBottleneck, self).__init__() |
|
|
|
sk_kwargs = sk_kwargs or {} |
|
conv_kwargs = dict(act_layer=act_layer, norm_layer=norm_layer) |
|
width = int(math.floor(planes * (base_width / 64)) * cardinality) |
|
first_planes = width // reduce_first |
|
outplanes = planes * self.expansion |
|
first_dilation = first_dilation or dilation |
|
|
|
self.conv1 = ConvNormAct(inplanes, first_planes, kernel_size=1, **conv_kwargs) |
|
self.conv2 = SelectiveKernel( |
|
first_planes, width, stride=stride, dilation=first_dilation, groups=cardinality, |
|
aa_layer=aa_layer, drop_layer=drop_block, **conv_kwargs, **sk_kwargs) |
|
self.conv3 = ConvNormAct(width, outplanes, kernel_size=1, apply_act=False, **conv_kwargs) |
|
self.se = create_attn(attn_layer, outplanes) |
|
self.act = act_layer(inplace=True) |
|
self.downsample = downsample |
|
self.drop_path = drop_path |
|
|
|
def zero_init_last(self): |
|
nn.init.zeros_(self.conv3.bn.weight) |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
x = self.conv3(x) |
|
if self.se is not None: |
|
x = self.se(x) |
|
if self.drop_path is not None: |
|
x = self.drop_path(x) |
|
if self.downsample is not None: |
|
shortcut = self.downsample(shortcut) |
|
x += shortcut |
|
x = self.act(x) |
|
return x |
|
|
|
|
|
def _create_skresnet(variant, pretrained=False, **kwargs): |
|
return build_model_with_cfg(ResNet, variant, pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def skresnet18(pretrained=False, **kwargs): |
|
"""Constructs a Selective Kernel ResNet-18 model. |
|
|
|
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this |
|
variation splits the input channels to the selective convolutions to keep param count down. |
|
""" |
|
sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True) |
|
model_args = dict( |
|
block=SelectiveKernelBasic, layers=[2, 2, 2, 2], block_args=dict(sk_kwargs=sk_kwargs), |
|
zero_init_last=False, **kwargs) |
|
return _create_skresnet('skresnet18', pretrained, **model_args) |
|
|
|
|
|
@register_model |
|
def skresnet34(pretrained=False, **kwargs): |
|
"""Constructs a Selective Kernel ResNet-34 model. |
|
|
|
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this |
|
variation splits the input channels to the selective convolutions to keep param count down. |
|
""" |
|
sk_kwargs = dict(rd_ratio=1 / 8, rd_divisor=16, split_input=True) |
|
model_args = dict( |
|
block=SelectiveKernelBasic, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs), |
|
zero_init_last=False, **kwargs) |
|
return _create_skresnet('skresnet34', pretrained, **model_args) |
|
|
|
|
|
@register_model |
|
def skresnet50(pretrained=False, **kwargs): |
|
"""Constructs a Select Kernel ResNet-50 model. |
|
|
|
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this |
|
variation splits the input channels to the selective convolutions to keep param count down. |
|
""" |
|
sk_kwargs = dict(split_input=True) |
|
model_args = dict( |
|
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], block_args=dict(sk_kwargs=sk_kwargs), |
|
zero_init_last=False, **kwargs) |
|
return _create_skresnet('skresnet50', pretrained, **model_args) |
|
|
|
|
|
@register_model |
|
def skresnet50d(pretrained=False, **kwargs): |
|
"""Constructs a Select Kernel ResNet-50-D model. |
|
|
|
Different from configs in Select Kernel paper or "Compounding the Performance Improvements..." this |
|
variation splits the input channels to the selective convolutions to keep param count down. |
|
""" |
|
sk_kwargs = dict(split_input=True) |
|
model_args = dict( |
|
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', avg_down=True, |
|
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs) |
|
return _create_skresnet('skresnet50d', pretrained, **model_args) |
|
|
|
|
|
@register_model |
|
def skresnext50_32x4d(pretrained=False, **kwargs): |
|
"""Constructs a Select Kernel ResNeXt50-32x4d model. This should be equivalent to |
|
the SKNet-50 model in the Select Kernel Paper |
|
""" |
|
sk_kwargs = dict(rd_ratio=1/16, rd_divisor=32, split_input=False) |
|
model_args = dict( |
|
block=SelectiveKernelBottleneck, layers=[3, 4, 6, 3], cardinality=32, base_width=4, |
|
block_args=dict(sk_kwargs=sk_kwargs), zero_init_last=False, **kwargs) |
|
return _create_skresnet('skresnext50_32x4d', pretrained, **model_args) |
|
|
|
|