|
""" Image to Patch Embedding using Conv2d |
|
|
|
A convolution based approach to patchifying a 2D image w/ embedding projection. |
|
|
|
Based on the impl in https://github.com/google-research/vision_transformer |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
from torch import nn as nn |
|
|
|
from .helpers import to_2tuple |
|
from .trace_utils import _assert |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" 2D Image to Patch Embedding |
|
""" |
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
norm_layer=None, |
|
flatten=True, |
|
bias=True, |
|
): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] |
|
self.flatten = flatten |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
_assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") |
|
_assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") |
|
x = self.proj(x) |
|
if self.flatten: |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
return x |
|
|