|
import json |
|
import logging |
|
import os |
|
from functools import partial |
|
from pathlib import Path |
|
from tempfile import TemporaryDirectory |
|
from typing import Optional, Union |
|
|
|
import torch |
|
from torch.hub import HASH_REGEX, download_url_to_file, urlparse |
|
|
|
try: |
|
from torch.hub import get_dir |
|
except ImportError: |
|
from torch.hub import _get_torch_home as get_dir |
|
|
|
from timm import __version__ |
|
|
|
try: |
|
from huggingface_hub import (create_repo, get_hf_file_metadata, |
|
hf_hub_download, hf_hub_url, |
|
repo_type_and_id_from_hf_id, upload_folder) |
|
from huggingface_hub.utils import EntryNotFoundError |
|
hf_hub_download = partial(hf_hub_download, library_name="timm", library_version=__version__) |
|
_has_hf_hub = True |
|
except ImportError: |
|
hf_hub_download = None |
|
_has_hf_hub = False |
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
def get_cache_dir(child_dir=''): |
|
""" |
|
Returns the location of the directory where models are cached (and creates it if necessary). |
|
""" |
|
|
|
if os.getenv('TORCH_MODEL_ZOO'): |
|
_logger.warning('TORCH_MODEL_ZOO is deprecated, please use env TORCH_HOME instead') |
|
|
|
hub_dir = get_dir() |
|
child_dir = () if not child_dir else (child_dir,) |
|
model_dir = os.path.join(hub_dir, 'checkpoints', *child_dir) |
|
os.makedirs(model_dir, exist_ok=True) |
|
return model_dir |
|
|
|
|
|
def download_cached_file(url, check_hash=True, progress=False): |
|
parts = urlparse(url) |
|
filename = os.path.basename(parts.path) |
|
cached_file = os.path.join(get_cache_dir(), filename) |
|
if not os.path.exists(cached_file): |
|
_logger.info('Downloading: "{}" to {}\n'.format(url, cached_file)) |
|
hash_prefix = None |
|
if check_hash: |
|
r = HASH_REGEX.search(filename) |
|
hash_prefix = r.group(1) if r else None |
|
download_url_to_file(url, cached_file, hash_prefix, progress=progress) |
|
return cached_file |
|
|
|
|
|
def has_hf_hub(necessary=False): |
|
if not _has_hf_hub and necessary: |
|
|
|
raise RuntimeError( |
|
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.') |
|
return _has_hf_hub |
|
|
|
|
|
def hf_split(hf_id): |
|
|
|
rev_split = hf_id.split('@') |
|
assert 0 < len(rev_split) <= 2, 'hf_hub id should only contain one @ character to identify revision.' |
|
hf_model_id = rev_split[0] |
|
hf_revision = rev_split[-1] if len(rev_split) > 1 else None |
|
return hf_model_id, hf_revision |
|
|
|
|
|
def load_cfg_from_json(json_file: Union[str, os.PathLike]): |
|
with open(json_file, "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
return json.loads(text) |
|
|
|
|
|
def _download_from_hf(model_id: str, filename: str): |
|
hf_model_id, hf_revision = hf_split(model_id) |
|
return hf_hub_download(hf_model_id, filename, revision=hf_revision) |
|
|
|
|
|
def load_model_config_from_hf(model_id: str): |
|
assert has_hf_hub(True) |
|
cached_file = _download_from_hf(model_id, 'config.json') |
|
pretrained_cfg = load_cfg_from_json(cached_file) |
|
pretrained_cfg['hf_hub_id'] = model_id |
|
pretrained_cfg['source'] = 'hf-hub' |
|
model_name = pretrained_cfg.get('architecture') |
|
return pretrained_cfg, model_name |
|
|
|
|
|
def load_state_dict_from_hf(model_id: str, filename: str = 'pytorch_model.bin'): |
|
assert has_hf_hub(True) |
|
cached_file = _download_from_hf(model_id, filename) |
|
state_dict = torch.load(cached_file, map_location='cpu') |
|
return state_dict |
|
|
|
|
|
def save_for_hf(model, save_directory, model_config=None): |
|
assert has_hf_hub(True) |
|
model_config = model_config or {} |
|
save_directory = Path(save_directory) |
|
save_directory.mkdir(exist_ok=True, parents=True) |
|
|
|
weights_path = save_directory / 'pytorch_model.bin' |
|
torch.save(model.state_dict(), weights_path) |
|
|
|
config_path = save_directory / 'config.json' |
|
hf_config = model.pretrained_cfg |
|
hf_config['num_classes'] = model_config.pop('num_classes', model.num_classes) |
|
hf_config['num_features'] = model_config.pop('num_features', model.num_features) |
|
hf_config['labels'] = model_config.pop('labels', [f"LABEL_{i}" for i in range(hf_config['num_classes'])]) |
|
hf_config.update(model_config) |
|
|
|
with config_path.open('w') as f: |
|
json.dump(hf_config, f, indent=2) |
|
|
|
|
|
def push_to_hf_hub( |
|
model, |
|
repo_id: str, |
|
commit_message: str ='Add model', |
|
token: Optional[str] = None, |
|
revision: Optional[str] = None, |
|
private: bool = False, |
|
create_pr: bool = False, |
|
model_config: Optional[dict] = None, |
|
): |
|
|
|
repo_url = create_repo(repo_id, token=token, private=private, exist_ok=True) |
|
|
|
|
|
|
|
_, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url) |
|
repo_id = f"{repo_owner}/{repo_name}" |
|
|
|
|
|
try: |
|
get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision)) |
|
has_readme = True |
|
except EntryNotFoundError: |
|
has_readme = False |
|
|
|
|
|
with TemporaryDirectory() as tmpdir: |
|
|
|
save_for_hf(model, tmpdir, model_config=model_config) |
|
|
|
|
|
if not has_readme: |
|
readme_path = Path(tmpdir) / "README.md" |
|
readme_text = f'---\ntags:\n- image-classification\n- timm\nlibrary_tag: timm\n---\n# Model card for {repo_id}' |
|
readme_path.write_text(readme_text) |
|
|
|
|
|
return upload_folder( |
|
repo_id=repo_id, |
|
folder_path=tmpdir, |
|
revision=revision, |
|
create_pr=create_pr, |
|
commit_message=commit_message, |
|
) |
|
|