|
""" Model creation / weight loading / state_dict helpers |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import collections.abc |
|
import logging |
|
import math |
|
import os |
|
import re |
|
from collections import OrderedDict, defaultdict |
|
from copy import deepcopy |
|
from itertools import chain |
|
from typing import Any, Callable, Optional, Tuple, Dict, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.hub import load_state_dict_from_url |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from .features import FeatureListNet, FeatureDictNet, FeatureHookNet |
|
from .fx_features import FeatureGraphNet |
|
from .hub import has_hf_hub, download_cached_file, load_state_dict_from_hf |
|
from .layers import Conv2dSame, Linear, BatchNormAct2d |
|
from .registry import get_pretrained_cfg |
|
|
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
|
_DOWNLOAD_PROGRESS = False |
|
_CHECK_HASH = False |
|
|
|
|
|
def clean_state_dict(state_dict): |
|
|
|
cleaned_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
name = k[7:] if k.startswith('module.') else k |
|
cleaned_state_dict[name] = v |
|
return cleaned_state_dict |
|
|
|
|
|
def load_state_dict(checkpoint_path, use_ema=True): |
|
if checkpoint_path and os.path.isfile(checkpoint_path): |
|
checkpoint = torch.load(checkpoint_path, map_location='cpu') |
|
state_dict_key = '' |
|
if isinstance(checkpoint, dict): |
|
if use_ema and checkpoint.get('state_dict_ema', None) is not None: |
|
state_dict_key = 'state_dict_ema' |
|
elif use_ema and checkpoint.get('model_ema', None) is not None: |
|
state_dict_key = 'model_ema' |
|
elif 'state_dict' in checkpoint: |
|
state_dict_key = 'state_dict' |
|
elif 'model' in checkpoint: |
|
state_dict_key = 'model' |
|
state_dict = clean_state_dict(checkpoint[state_dict_key] if state_dict_key else checkpoint) |
|
_logger.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path)) |
|
return state_dict |
|
else: |
|
_logger.error("No checkpoint found at '{}'".format(checkpoint_path)) |
|
raise FileNotFoundError() |
|
|
|
|
|
def load_checkpoint(model, checkpoint_path, use_ema=True, strict=True): |
|
if os.path.splitext(checkpoint_path)[-1].lower() in ('.npz', '.npy'): |
|
|
|
if hasattr(model, 'load_pretrained'): |
|
model.load_pretrained(checkpoint_path) |
|
else: |
|
raise NotImplementedError('Model cannot load numpy checkpoint') |
|
return |
|
state_dict = load_state_dict(checkpoint_path, use_ema) |
|
incompatible_keys = model.load_state_dict(state_dict, strict=strict) |
|
return incompatible_keys |
|
|
|
|
|
def resume_checkpoint(model, checkpoint_path, optimizer=None, loss_scaler=None, log_info=True): |
|
resume_epoch = None |
|
if os.path.isfile(checkpoint_path): |
|
checkpoint = torch.load(checkpoint_path, map_location='cpu') |
|
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: |
|
if log_info: |
|
_logger.info('Restoring model state from checkpoint...') |
|
state_dict = clean_state_dict(checkpoint['state_dict']) |
|
model.load_state_dict(state_dict) |
|
|
|
if optimizer is not None and 'optimizer' in checkpoint: |
|
if log_info: |
|
_logger.info('Restoring optimizer state from checkpoint...') |
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
|
|
if loss_scaler is not None and loss_scaler.state_dict_key in checkpoint: |
|
if log_info: |
|
_logger.info('Restoring AMP loss scaler state from checkpoint...') |
|
loss_scaler.load_state_dict(checkpoint[loss_scaler.state_dict_key]) |
|
|
|
if 'epoch' in checkpoint: |
|
resume_epoch = checkpoint['epoch'] |
|
if 'version' in checkpoint and checkpoint['version'] > 1: |
|
resume_epoch += 1 |
|
|
|
if log_info: |
|
_logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch'])) |
|
else: |
|
model.load_state_dict(checkpoint) |
|
if log_info: |
|
_logger.info("Loaded checkpoint '{}'".format(checkpoint_path)) |
|
return resume_epoch |
|
else: |
|
_logger.error("No checkpoint found at '{}'".format(checkpoint_path)) |
|
raise FileNotFoundError() |
|
|
|
|
|
def _resolve_pretrained_source(pretrained_cfg): |
|
cfg_source = pretrained_cfg.get('source', '') |
|
pretrained_url = pretrained_cfg.get('url', None) |
|
pretrained_file = pretrained_cfg.get('file', None) |
|
hf_hub_id = pretrained_cfg.get('hf_hub_id', None) |
|
|
|
load_from = '' |
|
pretrained_loc = '' |
|
if cfg_source == 'hf-hub' and has_hf_hub(necessary=True): |
|
|
|
load_from = 'hf-hub' |
|
assert hf_hub_id |
|
pretrained_loc = hf_hub_id |
|
else: |
|
|
|
if pretrained_file: |
|
load_from = 'file' |
|
pretrained_loc = pretrained_file |
|
elif pretrained_url: |
|
load_from = 'url' |
|
pretrained_loc = pretrained_url |
|
elif hf_hub_id and has_hf_hub(necessary=True): |
|
|
|
load_from = 'hf-hub' |
|
pretrained_loc = hf_hub_id |
|
if load_from == 'hf-hub' and 'hf_hub_filename' in pretrained_cfg: |
|
|
|
pretrained_loc = pretrained_loc, pretrained_cfg['hf_hub_filename'] |
|
return load_from, pretrained_loc |
|
|
|
|
|
def set_pretrained_download_progress(enable=True): |
|
""" Set download progress for pretrained weights on/off (globally). """ |
|
global _DOWNLOAD_PROGRESS |
|
_DOWNLOAD_PROGRESS = enable |
|
|
|
|
|
def set_pretrained_check_hash(enable=True): |
|
""" Set hash checking for pretrained weights on/off (globally). """ |
|
global _CHECK_HASH |
|
_CHECK_HASH = enable |
|
|
|
|
|
def load_custom_pretrained( |
|
model: nn.Module, |
|
pretrained_cfg: Optional[Dict] = None, |
|
load_fn: Optional[Callable] = None, |
|
): |
|
r"""Loads a custom (read non .pth) weight file |
|
|
|
Downloads checkpoint file into cache-dir like torch.hub based loaders, but calls |
|
a passed in custom load fun, or the `load_pretrained` model member fn. |
|
|
|
If the object is already present in `model_dir`, it's deserialized and returned. |
|
The default value of `model_dir` is ``<hub_dir>/checkpoints`` where |
|
`hub_dir` is the directory returned by :func:`~torch.hub.get_dir`. |
|
|
|
Args: |
|
model: The instantiated model to load weights into |
|
pretrained_cfg (dict): Default pretrained model cfg |
|
load_fn: An external stand alone fn that loads weights into provided model, otherwise a fn named |
|
'laod_pretrained' on the model will be called if it exists |
|
""" |
|
pretrained_cfg = pretrained_cfg or getattr(model, 'pretrained_cfg', None) or {} |
|
load_from, pretrained_loc = _resolve_pretrained_source(pretrained_cfg) |
|
if not load_from: |
|
_logger.warning("No pretrained weights exist for this model. Using random initialization.") |
|
return |
|
if load_from == 'hf-hub': |
|
_logger.warning("Hugging Face hub not currently supported for custom load pretrained models.") |
|
elif load_from == 'url': |
|
pretrained_loc = download_cached_file(pretrained_loc, check_hash=_CHECK_HASH, progress=_DOWNLOAD_PROGRESS) |
|
|
|
if load_fn is not None: |
|
load_fn(model, pretrained_loc) |
|
elif hasattr(model, 'load_pretrained'): |
|
model.load_pretrained(pretrained_loc) |
|
else: |
|
_logger.warning("Valid function to load pretrained weights is not available, using random initialization.") |
|
|
|
|
|
def adapt_input_conv(in_chans, conv_weight): |
|
conv_type = conv_weight.dtype |
|
conv_weight = conv_weight.float() |
|
O, I, J, K = conv_weight.shape |
|
if in_chans == 1: |
|
if I > 3: |
|
assert conv_weight.shape[1] % 3 == 0 |
|
|
|
conv_weight = conv_weight.reshape(O, I // 3, 3, J, K) |
|
conv_weight = conv_weight.sum(dim=2, keepdim=False) |
|
else: |
|
conv_weight = conv_weight.sum(dim=1, keepdim=True) |
|
elif in_chans != 3: |
|
if I != 3: |
|
raise NotImplementedError('Weight format not supported by conversion.') |
|
else: |
|
|
|
|
|
repeat = int(math.ceil(in_chans / 3)) |
|
conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :] |
|
conv_weight *= (3 / float(in_chans)) |
|
conv_weight = conv_weight.to(conv_type) |
|
return conv_weight |
|
|
|
|
|
def load_pretrained( |
|
model: nn.Module, |
|
pretrained_cfg: Optional[Dict] = None, |
|
num_classes: int = 1000, |
|
in_chans: int = 3, |
|
filter_fn: Optional[Callable] = None, |
|
strict: bool = True, |
|
): |
|
""" Load pretrained checkpoint |
|
|
|
Args: |
|
model (nn.Module) : PyTorch model module |
|
pretrained_cfg (Optional[Dict]): configuration for pretrained weights / target dataset |
|
num_classes (int): num_classes for model |
|
in_chans (int): in_chans for model |
|
filter_fn (Optional[Callable]): state_dict filter fn for load (takes state_dict, model as args) |
|
strict (bool): strict load of checkpoint |
|
|
|
""" |
|
pretrained_cfg = pretrained_cfg or getattr(model, 'pretrained_cfg', None) or {} |
|
load_from, pretrained_loc = _resolve_pretrained_source(pretrained_cfg) |
|
if load_from == 'file': |
|
_logger.info(f'Loading pretrained weights from file ({pretrained_loc})') |
|
state_dict = load_state_dict(pretrained_loc) |
|
elif load_from == 'url': |
|
_logger.info(f'Loading pretrained weights from url ({pretrained_loc})') |
|
state_dict = load_state_dict_from_url( |
|
pretrained_loc, map_location='cpu', progress=_DOWNLOAD_PROGRESS, check_hash=_CHECK_HASH) |
|
elif load_from == 'hf-hub': |
|
_logger.info(f'Loading pretrained weights from Hugging Face hub ({pretrained_loc})') |
|
if isinstance(pretrained_loc, (list, tuple)): |
|
state_dict = load_state_dict_from_hf(*pretrained_loc) |
|
else: |
|
state_dict = load_state_dict_from_hf(pretrained_loc) |
|
else: |
|
_logger.warning("No pretrained weights exist or were found for this model. Using random initialization.") |
|
return |
|
|
|
if filter_fn is not None: |
|
|
|
try: |
|
state_dict = filter_fn(state_dict) |
|
except TypeError: |
|
state_dict = filter_fn(state_dict, model) |
|
|
|
input_convs = pretrained_cfg.get('first_conv', None) |
|
if input_convs is not None and in_chans != 3: |
|
if isinstance(input_convs, str): |
|
input_convs = (input_convs,) |
|
for input_conv_name in input_convs: |
|
weight_name = input_conv_name + '.weight' |
|
try: |
|
state_dict[weight_name] = adapt_input_conv(in_chans, state_dict[weight_name]) |
|
_logger.info( |
|
f'Converted input conv {input_conv_name} pretrained weights from 3 to {in_chans} channel(s)') |
|
except NotImplementedError as e: |
|
del state_dict[weight_name] |
|
strict = False |
|
_logger.warning( |
|
f'Unable to convert pretrained {input_conv_name} weights, using random init for this layer.') |
|
|
|
classifiers = pretrained_cfg.get('classifier', None) |
|
label_offset = pretrained_cfg.get('label_offset', 0) |
|
if classifiers is not None: |
|
if isinstance(classifiers, str): |
|
classifiers = (classifiers,) |
|
if num_classes != pretrained_cfg['num_classes']: |
|
for classifier_name in classifiers: |
|
|
|
state_dict.pop(classifier_name + '.weight', None) |
|
state_dict.pop(classifier_name + '.bias', None) |
|
strict = False |
|
elif label_offset > 0: |
|
for classifier_name in classifiers: |
|
|
|
classifier_weight = state_dict[classifier_name + '.weight'] |
|
state_dict[classifier_name + '.weight'] = classifier_weight[label_offset:] |
|
classifier_bias = state_dict[classifier_name + '.bias'] |
|
state_dict[classifier_name + '.bias'] = classifier_bias[label_offset:] |
|
|
|
model.load_state_dict(state_dict, strict=strict) |
|
|
|
|
|
def extract_layer(model, layer): |
|
layer = layer.split('.') |
|
module = model |
|
if hasattr(model, 'module') and layer[0] != 'module': |
|
module = model.module |
|
if not hasattr(model, 'module') and layer[0] == 'module': |
|
layer = layer[1:] |
|
for l in layer: |
|
if hasattr(module, l): |
|
if not l.isdigit(): |
|
module = getattr(module, l) |
|
else: |
|
module = module[int(l)] |
|
else: |
|
return module |
|
return module |
|
|
|
|
|
def set_layer(model, layer, val): |
|
layer = layer.split('.') |
|
module = model |
|
if hasattr(model, 'module') and layer[0] != 'module': |
|
module = model.module |
|
lst_index = 0 |
|
module2 = module |
|
for l in layer: |
|
if hasattr(module2, l): |
|
if not l.isdigit(): |
|
module2 = getattr(module2, l) |
|
else: |
|
module2 = module2[int(l)] |
|
lst_index += 1 |
|
lst_index -= 1 |
|
for l in layer[:lst_index]: |
|
if not l.isdigit(): |
|
module = getattr(module, l) |
|
else: |
|
module = module[int(l)] |
|
l = layer[lst_index] |
|
setattr(module, l, val) |
|
|
|
|
|
def adapt_model_from_string(parent_module, model_string): |
|
separator = '***' |
|
state_dict = {} |
|
lst_shape = model_string.split(separator) |
|
for k in lst_shape: |
|
k = k.split(':') |
|
key = k[0] |
|
shape = k[1][1:-1].split(',') |
|
if shape[0] != '': |
|
state_dict[key] = [int(i) for i in shape] |
|
|
|
new_module = deepcopy(parent_module) |
|
for n, m in parent_module.named_modules(): |
|
old_module = extract_layer(parent_module, n) |
|
if isinstance(old_module, nn.Conv2d) or isinstance(old_module, Conv2dSame): |
|
if isinstance(old_module, Conv2dSame): |
|
conv = Conv2dSame |
|
else: |
|
conv = nn.Conv2d |
|
s = state_dict[n + '.weight'] |
|
in_channels = s[1] |
|
out_channels = s[0] |
|
g = 1 |
|
if old_module.groups > 1: |
|
in_channels = out_channels |
|
g = in_channels |
|
new_conv = conv( |
|
in_channels=in_channels, out_channels=out_channels, kernel_size=old_module.kernel_size, |
|
bias=old_module.bias is not None, padding=old_module.padding, dilation=old_module.dilation, |
|
groups=g, stride=old_module.stride) |
|
set_layer(new_module, n, new_conv) |
|
elif isinstance(old_module, BatchNormAct2d): |
|
new_bn = BatchNormAct2d( |
|
state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum, |
|
affine=old_module.affine, track_running_stats=True) |
|
new_bn.drop = old_module.drop |
|
new_bn.act = old_module.act |
|
set_layer(new_module, n, new_bn) |
|
elif isinstance(old_module, nn.BatchNorm2d): |
|
new_bn = nn.BatchNorm2d( |
|
num_features=state_dict[n + '.weight'][0], eps=old_module.eps, momentum=old_module.momentum, |
|
affine=old_module.affine, track_running_stats=True) |
|
set_layer(new_module, n, new_bn) |
|
elif isinstance(old_module, nn.Linear): |
|
|
|
num_features = state_dict[n + '.weight'][1] |
|
new_fc = Linear( |
|
in_features=num_features, out_features=old_module.out_features, bias=old_module.bias is not None) |
|
set_layer(new_module, n, new_fc) |
|
if hasattr(new_module, 'num_features'): |
|
new_module.num_features = num_features |
|
new_module.eval() |
|
parent_module.eval() |
|
|
|
return new_module |
|
|
|
|
|
def adapt_model_from_file(parent_module, model_variant): |
|
adapt_file = os.path.join(os.path.dirname(__file__), 'pruned', model_variant + '.txt') |
|
with open(adapt_file, 'r') as f: |
|
return adapt_model_from_string(parent_module, f.read().strip()) |
|
|
|
|
|
def pretrained_cfg_for_features(pretrained_cfg): |
|
pretrained_cfg = deepcopy(pretrained_cfg) |
|
|
|
to_remove = ('num_classes', 'crop_pct', 'classifier', 'global_pool') |
|
for tr in to_remove: |
|
pretrained_cfg.pop(tr, None) |
|
return pretrained_cfg |
|
|
|
|
|
def set_default_kwargs(kwargs, names, pretrained_cfg): |
|
for n in names: |
|
|
|
|
|
if n == 'img_size': |
|
input_size = pretrained_cfg.get('input_size', None) |
|
if input_size is not None: |
|
assert len(input_size) == 3 |
|
kwargs.setdefault(n, input_size[-2:]) |
|
elif n == 'in_chans': |
|
input_size = pretrained_cfg.get('input_size', None) |
|
if input_size is not None: |
|
assert len(input_size) == 3 |
|
kwargs.setdefault(n, input_size[0]) |
|
else: |
|
default_val = pretrained_cfg.get(n, None) |
|
if default_val is not None: |
|
kwargs.setdefault(n, pretrained_cfg[n]) |
|
|
|
|
|
def filter_kwargs(kwargs, names): |
|
if not kwargs or not names: |
|
return |
|
for n in names: |
|
kwargs.pop(n, None) |
|
|
|
|
|
def update_pretrained_cfg_and_kwargs(pretrained_cfg, kwargs, kwargs_filter): |
|
""" Update the default_cfg and kwargs before passing to model |
|
|
|
Args: |
|
pretrained_cfg: input pretrained cfg (updated in-place) |
|
kwargs: keyword args passed to model build fn (updated in-place) |
|
kwargs_filter: keyword arg keys that must be removed before model __init__ |
|
""" |
|
|
|
default_kwarg_names = ('num_classes', 'global_pool', 'in_chans') |
|
if pretrained_cfg.get('fixed_input_size', False): |
|
|
|
default_kwarg_names += ('img_size',) |
|
set_default_kwargs(kwargs, names=default_kwarg_names, pretrained_cfg=pretrained_cfg) |
|
|
|
filter_kwargs(kwargs, names=kwargs_filter) |
|
|
|
|
|
def resolve_pretrained_cfg(variant: str, pretrained_cfg=None): |
|
if pretrained_cfg and isinstance(pretrained_cfg, dict): |
|
|
|
return deepcopy(pretrained_cfg) |
|
|
|
pretrained_cfg = get_pretrained_cfg(variant) |
|
if not pretrained_cfg: |
|
_logger.warning( |
|
f"No pretrained configuration specified for {variant} model. Using a default." |
|
f" Please add a config to the model pretrained_cfg registry or pass explicitly.") |
|
pretrained_cfg = dict( |
|
url='', |
|
num_classes=1000, |
|
input_size=(3, 224, 224), |
|
pool_size=None, |
|
crop_pct=.9, |
|
interpolation='bicubic', |
|
first_conv='', |
|
classifier='', |
|
) |
|
return pretrained_cfg |
|
|
|
|
|
def build_model_with_cfg( |
|
model_cls: Callable, |
|
variant: str, |
|
pretrained: bool, |
|
pretrained_cfg: Optional[Dict] = None, |
|
model_cfg: Optional[Any] = None, |
|
feature_cfg: Optional[Dict] = None, |
|
pretrained_strict: bool = True, |
|
pretrained_filter_fn: Optional[Callable] = None, |
|
pretrained_custom_load: bool = False, |
|
kwargs_filter: Optional[Tuple[str]] = None, |
|
**kwargs): |
|
""" Build model with specified default_cfg and optional model_cfg |
|
|
|
This helper fn aids in the construction of a model including: |
|
* handling default_cfg and associated pretrained weight loading |
|
* passing through optional model_cfg for models with config based arch spec |
|
* features_only model adaptation |
|
* pruning config / model adaptation |
|
|
|
Args: |
|
model_cls (nn.Module): model class |
|
variant (str): model variant name |
|
pretrained (bool): load pretrained weights |
|
pretrained_cfg (dict): model's pretrained weight/task config |
|
model_cfg (Optional[Dict]): model's architecture config |
|
feature_cfg (Optional[Dict]: feature extraction adapter config |
|
pretrained_strict (bool): load pretrained weights strictly |
|
pretrained_filter_fn (Optional[Callable]): filter callable for pretrained weights |
|
pretrained_custom_load (bool): use custom load fn, to load numpy or other non PyTorch weights |
|
kwargs_filter (Optional[Tuple]): kwargs to filter before passing to model |
|
**kwargs: model args passed through to model __init__ |
|
""" |
|
pruned = kwargs.pop('pruned', False) |
|
features = False |
|
feature_cfg = feature_cfg or {} |
|
|
|
|
|
pretrained_cfg = resolve_pretrained_cfg(variant, pretrained_cfg=pretrained_cfg) |
|
update_pretrained_cfg_and_kwargs(pretrained_cfg, kwargs, kwargs_filter) |
|
pretrained_cfg.setdefault('architecture', variant) |
|
|
|
|
|
if kwargs.pop('features_only', False): |
|
features = True |
|
feature_cfg.setdefault('out_indices', (0, 1, 2, 3, 4)) |
|
if 'out_indices' in kwargs: |
|
feature_cfg['out_indices'] = kwargs.pop('out_indices') |
|
|
|
|
|
model = model_cls(**kwargs) if model_cfg is None else model_cls(cfg=model_cfg, **kwargs) |
|
model.pretrained_cfg = pretrained_cfg |
|
model.default_cfg = model.pretrained_cfg |
|
|
|
if pruned: |
|
model = adapt_model_from_file(model, variant) |
|
|
|
|
|
num_classes_pretrained = 0 if features else getattr(model, 'num_classes', kwargs.get('num_classes', 1000)) |
|
if pretrained: |
|
if pretrained_custom_load: |
|
|
|
load_custom_pretrained(model, pretrained_cfg=pretrained_cfg) |
|
else: |
|
load_pretrained( |
|
model, |
|
pretrained_cfg=pretrained_cfg, |
|
num_classes=num_classes_pretrained, |
|
in_chans=kwargs.get('in_chans', 3), |
|
filter_fn=pretrained_filter_fn, |
|
strict=pretrained_strict) |
|
|
|
|
|
if features: |
|
feature_cls = FeatureListNet |
|
if 'feature_cls' in feature_cfg: |
|
feature_cls = feature_cfg.pop('feature_cls') |
|
if isinstance(feature_cls, str): |
|
feature_cls = feature_cls.lower() |
|
if 'hook' in feature_cls: |
|
feature_cls = FeatureHookNet |
|
elif feature_cls == 'fx': |
|
feature_cls = FeatureGraphNet |
|
else: |
|
assert False, f'Unknown feature class {feature_cls}' |
|
model = feature_cls(model, **feature_cfg) |
|
model.pretrained_cfg = pretrained_cfg_for_features(pretrained_cfg) |
|
model.default_cfg = model.pretrained_cfg |
|
|
|
return model |
|
|
|
|
|
def model_parameters(model, exclude_head=False): |
|
if exclude_head: |
|
|
|
return [p for p in model.parameters()][:-2] |
|
else: |
|
return model.parameters() |
|
|
|
|
|
def named_apply(fn: Callable, module: nn.Module, name='', depth_first=True, include_root=False) -> nn.Module: |
|
if not depth_first and include_root: |
|
fn(module=module, name=name) |
|
for child_name, child_module in module.named_children(): |
|
child_name = '.'.join((name, child_name)) if name else child_name |
|
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) |
|
if depth_first and include_root: |
|
fn(module=module, name=name) |
|
return module |
|
|
|
|
|
def named_modules(module: nn.Module, name='', depth_first=True, include_root=False): |
|
if not depth_first and include_root: |
|
yield name, module |
|
for child_name, child_module in module.named_children(): |
|
child_name = '.'.join((name, child_name)) if name else child_name |
|
yield from named_modules( |
|
module=child_module, name=child_name, depth_first=depth_first, include_root=True) |
|
if depth_first and include_root: |
|
yield name, module |
|
|
|
|
|
def named_modules_with_params(module: nn.Module, name='', depth_first=True, include_root=False): |
|
if module._parameters and not depth_first and include_root: |
|
yield name, module |
|
for child_name, child_module in module.named_children(): |
|
child_name = '.'.join((name, child_name)) if name else child_name |
|
yield from named_modules_with_params( |
|
module=child_module, name=child_name, depth_first=depth_first, include_root=True) |
|
if module._parameters and depth_first and include_root: |
|
yield name, module |
|
|
|
|
|
MATCH_PREV_GROUP = (99999,) |
|
|
|
|
|
def group_with_matcher( |
|
named_objects, |
|
group_matcher: Union[Dict, Callable], |
|
output_values: bool = False, |
|
reverse: bool = False |
|
): |
|
if isinstance(group_matcher, dict): |
|
|
|
compiled = [] |
|
for group_ordinal, (group_name, mspec) in enumerate(group_matcher.items()): |
|
if mspec is None: |
|
continue |
|
|
|
if isinstance(mspec, (tuple, list)): |
|
|
|
for sspec in mspec: |
|
compiled += [(re.compile(sspec[0]), (group_ordinal,), sspec[1])] |
|
else: |
|
compiled += [(re.compile(mspec), (group_ordinal,), None)] |
|
group_matcher = compiled |
|
|
|
def _get_grouping(name): |
|
if isinstance(group_matcher, (list, tuple)): |
|
for match_fn, prefix, suffix in group_matcher: |
|
r = match_fn.match(name) |
|
if r: |
|
parts = (prefix, r.groups(), suffix) |
|
|
|
return tuple(map(float, chain.from_iterable(filter(None, parts)))) |
|
return float('inf'), |
|
else: |
|
ord = group_matcher(name) |
|
if not isinstance(ord, collections.abc.Iterable): |
|
return ord, |
|
return tuple(ord) |
|
|
|
|
|
grouping = defaultdict(list) |
|
for k, v in named_objects: |
|
grouping[_get_grouping(k)].append(v if output_values else k) |
|
|
|
|
|
layer_id_to_param = defaultdict(list) |
|
lid = -1 |
|
for k in sorted(filter(lambda x: x is not None, grouping.keys())): |
|
if lid < 0 or k[-1] != MATCH_PREV_GROUP[0]: |
|
lid += 1 |
|
layer_id_to_param[lid].extend(grouping[k]) |
|
|
|
if reverse: |
|
assert not output_values, "reverse mapping only sensible for name output" |
|
|
|
param_to_layer_id = {} |
|
for lid, lm in layer_id_to_param.items(): |
|
for n in lm: |
|
param_to_layer_id[n] = lid |
|
return param_to_layer_id |
|
|
|
return layer_id_to_param |
|
|
|
|
|
def group_parameters( |
|
module: nn.Module, |
|
group_matcher, |
|
output_values=False, |
|
reverse=False, |
|
): |
|
return group_with_matcher( |
|
module.named_parameters(), group_matcher, output_values=output_values, reverse=reverse) |
|
|
|
|
|
def group_modules( |
|
module: nn.Module, |
|
group_matcher, |
|
output_values=False, |
|
reverse=False, |
|
): |
|
return group_with_matcher( |
|
named_modules_with_params(module), group_matcher, output_values=output_values, reverse=reverse) |
|
|
|
|
|
def checkpoint_seq( |
|
functions, |
|
x, |
|
every=1, |
|
flatten=False, |
|
skip_last=False, |
|
preserve_rng_state=True |
|
): |
|
r"""A helper function for checkpointing sequential models. |
|
|
|
Sequential models execute a list of modules/functions in order |
|
(sequentially). Therefore, we can divide such a sequence into segments |
|
and checkpoint each segment. All segments except run in :func:`torch.no_grad` |
|
manner, i.e., not storing the intermediate activations. The inputs of each |
|
checkpointed segment will be saved for re-running the segment in the backward pass. |
|
|
|
See :func:`~torch.utils.checkpoint.checkpoint` on how checkpointing works. |
|
|
|
.. warning:: |
|
Checkpointing currently only supports :func:`torch.autograd.backward` |
|
and only if its `inputs` argument is not passed. :func:`torch.autograd.grad` |
|
is not supported. |
|
|
|
.. warning: |
|
At least one of the inputs needs to have :code:`requires_grad=True` if |
|
grads are needed for model inputs, otherwise the checkpointed part of the |
|
model won't have gradients. |
|
|
|
Args: |
|
functions: A :class:`torch.nn.Sequential` or the list of modules or functions to run sequentially. |
|
x: A Tensor that is input to :attr:`functions` |
|
every: checkpoint every-n functions (default: 1) |
|
flatten (bool): flatten nn.Sequential of nn.Sequentials |
|
skip_last (bool): skip checkpointing the last function in the sequence if True |
|
preserve_rng_state (bool, optional, default=True): Omit stashing and restoring |
|
the RNG state during each checkpoint. |
|
|
|
Returns: |
|
Output of running :attr:`functions` sequentially on :attr:`*inputs` |
|
|
|
Example: |
|
>>> model = nn.Sequential(...) |
|
>>> input_var = checkpoint_seq(model, input_var, every=2) |
|
""" |
|
def run_function(start, end, functions): |
|
def forward(_x): |
|
for j in range(start, end + 1): |
|
_x = functions[j](_x) |
|
return _x |
|
return forward |
|
|
|
if isinstance(functions, torch.nn.Sequential): |
|
functions = functions.children() |
|
if flatten: |
|
functions = chain.from_iterable(functions) |
|
if not isinstance(functions, (tuple, list)): |
|
functions = tuple(functions) |
|
|
|
num_checkpointed = len(functions) |
|
if skip_last: |
|
num_checkpointed -= 1 |
|
end = -1 |
|
for start in range(0, num_checkpointed, every): |
|
end = min(start + every - 1, num_checkpointed - 1) |
|
x = checkpoint(run_function(start, end, functions), x, preserve_rng_state=preserve_rng_state) |
|
if skip_last: |
|
return run_function(end + 1, len(functions) - 1, functions)(x) |
|
return x |
|
|
|
|
|
def flatten_modules(named_modules, depth=1, prefix='', module_types='sequential'): |
|
prefix_is_tuple = isinstance(prefix, tuple) |
|
if isinstance(module_types, str): |
|
if module_types == 'container': |
|
module_types = (nn.Sequential, nn.ModuleList, nn.ModuleDict) |
|
else: |
|
module_types = (nn.Sequential,) |
|
for name, module in named_modules: |
|
if depth and isinstance(module, module_types): |
|
yield from flatten_modules( |
|
module.named_children(), |
|
depth - 1, |
|
prefix=(name,) if prefix_is_tuple else name, |
|
module_types=module_types, |
|
) |
|
else: |
|
if prefix_is_tuple: |
|
name = prefix + (name,) |
|
yield name, module |
|
else: |
|
if prefix: |
|
name = '.'.join([prefix, name]) |
|
yield name, module |
|
|