|
""" |
|
This module provides convenient functions to transform SymPy expressions to |
|
lambda functions which can be used to calculate numerical values very fast. |
|
""" |
|
|
|
from __future__ import annotations |
|
from typing import Any |
|
|
|
import builtins |
|
import inspect |
|
import keyword |
|
import textwrap |
|
import linecache |
|
import weakref |
|
|
|
|
|
from sympy.external import import_module |
|
from sympy.utilities.exceptions import sympy_deprecation_warning |
|
from sympy.utilities.decorator import doctest_depends_on |
|
from sympy.utilities.iterables import (is_sequence, iterable, |
|
NotIterable, flatten) |
|
from sympy.utilities.misc import filldedent |
|
|
|
|
|
__doctest_requires__ = {('lambdify',): ['numpy', 'tensorflow']} |
|
|
|
|
|
|
|
|
|
MATH_DEFAULT: dict[str, Any] = {} |
|
CMATH_DEFAULT: dict[str,Any] = {} |
|
MPMATH_DEFAULT: dict[str, Any] = {} |
|
NUMPY_DEFAULT: dict[str, Any] = {"I": 1j} |
|
SCIPY_DEFAULT: dict[str, Any] = {"I": 1j} |
|
CUPY_DEFAULT: dict[str, Any] = {"I": 1j} |
|
JAX_DEFAULT: dict[str, Any] = {"I": 1j} |
|
TENSORFLOW_DEFAULT: dict[str, Any] = {} |
|
TORCH_DEFAULT: dict[str, Any] = {"I": 1j} |
|
SYMPY_DEFAULT: dict[str, Any] = {} |
|
NUMEXPR_DEFAULT: dict[str, Any] = {} |
|
|
|
|
|
|
|
|
|
|
|
MATH = MATH_DEFAULT.copy() |
|
CMATH = CMATH_DEFAULT.copy() |
|
MPMATH = MPMATH_DEFAULT.copy() |
|
NUMPY = NUMPY_DEFAULT.copy() |
|
SCIPY = SCIPY_DEFAULT.copy() |
|
CUPY = CUPY_DEFAULT.copy() |
|
JAX = JAX_DEFAULT.copy() |
|
TENSORFLOW = TENSORFLOW_DEFAULT.copy() |
|
TORCH = TORCH_DEFAULT.copy() |
|
SYMPY = SYMPY_DEFAULT.copy() |
|
NUMEXPR = NUMEXPR_DEFAULT.copy() |
|
|
|
|
|
|
|
MATH_TRANSLATIONS = { |
|
"ceiling": "ceil", |
|
"E": "e", |
|
"ln": "log", |
|
} |
|
|
|
CMATH_TRANSLATIONS: dict[str, str] = {} |
|
|
|
|
|
|
|
MPMATH_TRANSLATIONS = { |
|
"Abs": "fabs", |
|
"elliptic_k": "ellipk", |
|
"elliptic_f": "ellipf", |
|
"elliptic_e": "ellipe", |
|
"elliptic_pi": "ellippi", |
|
"ceiling": "ceil", |
|
"chebyshevt": "chebyt", |
|
"chebyshevu": "chebyu", |
|
"assoc_legendre": "legenp", |
|
"E": "e", |
|
"I": "j", |
|
"ln": "log", |
|
|
|
"oo": "inf", |
|
|
|
"LambertW": "lambertw", |
|
"MutableDenseMatrix": "matrix", |
|
"ImmutableDenseMatrix": "matrix", |
|
"conjugate": "conj", |
|
"dirichlet_eta": "altzeta", |
|
"Ei": "ei", |
|
"Shi": "shi", |
|
"Chi": "chi", |
|
"Si": "si", |
|
"Ci": "ci", |
|
"RisingFactorial": "rf", |
|
"FallingFactorial": "ff", |
|
"betainc_regularized": "betainc", |
|
} |
|
|
|
NUMPY_TRANSLATIONS: dict[str, str] = { |
|
"Heaviside": "heaviside", |
|
} |
|
SCIPY_TRANSLATIONS: dict[str, str] = { |
|
"jn" : "spherical_jn", |
|
"yn" : "spherical_yn" |
|
} |
|
CUPY_TRANSLATIONS: dict[str, str] = {} |
|
JAX_TRANSLATIONS: dict[str, str] = {} |
|
|
|
TENSORFLOW_TRANSLATIONS: dict[str, str] = {} |
|
TORCH_TRANSLATIONS: dict[str, str] = {} |
|
|
|
NUMEXPR_TRANSLATIONS: dict[str, str] = {} |
|
|
|
|
|
MODULES = { |
|
"math": (MATH, MATH_DEFAULT, MATH_TRANSLATIONS, ("from math import *",)), |
|
"cmath": (CMATH, CMATH_DEFAULT, CMATH_TRANSLATIONS, ("import cmath; from cmath import *",)), |
|
"mpmath": (MPMATH, MPMATH_DEFAULT, MPMATH_TRANSLATIONS, ("from mpmath import *",)), |
|
"numpy": (NUMPY, NUMPY_DEFAULT, NUMPY_TRANSLATIONS, ("import numpy; from numpy import *; from numpy.linalg import *",)), |
|
"scipy": (SCIPY, SCIPY_DEFAULT, SCIPY_TRANSLATIONS, ("import scipy; import numpy; from scipy.special import *",)), |
|
"cupy": (CUPY, CUPY_DEFAULT, CUPY_TRANSLATIONS, ("import cupy",)), |
|
"jax": (JAX, JAX_DEFAULT, JAX_TRANSLATIONS, ("import jax",)), |
|
"tensorflow": (TENSORFLOW, TENSORFLOW_DEFAULT, TENSORFLOW_TRANSLATIONS, ("import tensorflow",)), |
|
"torch": (TORCH, TORCH_DEFAULT, TORCH_TRANSLATIONS, ("import torch",)), |
|
"sympy": (SYMPY, SYMPY_DEFAULT, {}, ( |
|
"from sympy.functions import *", |
|
"from sympy.matrices import *", |
|
"from sympy import Integral, pi, oo, nan, zoo, E, I",)), |
|
"numexpr" : (NUMEXPR, NUMEXPR_DEFAULT, NUMEXPR_TRANSLATIONS, |
|
("import_module('numexpr')", )), |
|
} |
|
|
|
|
|
def _import(module, reload=False): |
|
""" |
|
Creates a global translation dictionary for module. |
|
|
|
The argument module has to be one of the following strings: "math","cmath" |
|
"mpmath", "numpy", "sympy", "tensorflow", "jax". |
|
These dictionaries map names of Python functions to their equivalent in |
|
other modules. |
|
""" |
|
try: |
|
namespace, namespace_default, translations, import_commands = MODULES[ |
|
module] |
|
except KeyError: |
|
raise NameError( |
|
"'%s' module cannot be used for lambdification" % module) |
|
|
|
|
|
if namespace != namespace_default: |
|
|
|
if reload: |
|
namespace.clear() |
|
namespace.update(namespace_default) |
|
else: |
|
return |
|
|
|
for import_command in import_commands: |
|
if import_command.startswith('import_module'): |
|
module = eval(import_command) |
|
|
|
if module is not None: |
|
namespace.update(module.__dict__) |
|
continue |
|
else: |
|
try: |
|
exec(import_command, {}, namespace) |
|
continue |
|
except ImportError: |
|
pass |
|
|
|
raise ImportError( |
|
"Cannot import '%s' with '%s' command" % (module, import_command)) |
|
|
|
|
|
for sympyname, translation in translations.items(): |
|
namespace[sympyname] = namespace[translation] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if 'Abs' not in namespace: |
|
namespace['Abs'] = abs |
|
|
|
|
|
|
|
_lambdify_generated_counter = 1 |
|
|
|
|
|
@doctest_depends_on(modules=('numpy', 'scipy', 'tensorflow',), python_version=(3,)) |
|
def lambdify(args, expr, modules=None, printer=None, use_imps=True, |
|
dummify=False, cse=False, docstring_limit=1000): |
|
"""Convert a SymPy expression into a function that allows for fast |
|
numeric evaluation. |
|
|
|
.. warning:: |
|
This function uses ``exec``, and thus should not be used on |
|
unsanitized input. |
|
|
|
.. deprecated:: 1.7 |
|
Passing a set for the *args* parameter is deprecated as sets are |
|
unordered. Use an ordered iterable such as a list or tuple. |
|
|
|
Explanation |
|
=========== |
|
|
|
For example, to convert the SymPy expression ``sin(x) + cos(x)`` to an |
|
equivalent NumPy function that numerically evaluates it: |
|
|
|
>>> from sympy import sin, cos, symbols, lambdify |
|
>>> import numpy as np |
|
>>> x = symbols('x') |
|
>>> expr = sin(x) + cos(x) |
|
>>> expr |
|
sin(x) + cos(x) |
|
>>> f = lambdify(x, expr, 'numpy') |
|
>>> a = np.array([1, 2]) |
|
>>> f(a) |
|
[1.38177329 0.49315059] |
|
|
|
The primary purpose of this function is to provide a bridge from SymPy |
|
expressions to numerical libraries such as NumPy, SciPy, NumExpr, mpmath, |
|
and tensorflow. In general, SymPy functions do not work with objects from |
|
other libraries, such as NumPy arrays, and functions from numeric |
|
libraries like NumPy or mpmath do not work on SymPy expressions. |
|
``lambdify`` bridges the two by converting a SymPy expression to an |
|
equivalent numeric function. |
|
|
|
The basic workflow with ``lambdify`` is to first create a SymPy expression |
|
representing whatever mathematical function you wish to evaluate. This |
|
should be done using only SymPy functions and expressions. Then, use |
|
``lambdify`` to convert this to an equivalent function for numerical |
|
evaluation. For instance, above we created ``expr`` using the SymPy symbol |
|
``x`` and SymPy functions ``sin`` and ``cos``, then converted it to an |
|
equivalent NumPy function ``f``, and called it on a NumPy array ``a``. |
|
|
|
Parameters |
|
========== |
|
|
|
args : List[Symbol] |
|
A variable or a list of variables whose nesting represents the |
|
nesting of the arguments that will be passed to the function. |
|
|
|
Variables can be symbols, undefined functions, or matrix symbols. |
|
|
|
>>> from sympy import Eq |
|
>>> from sympy.abc import x, y, z |
|
|
|
The list of variables should match the structure of how the |
|
arguments will be passed to the function. Simply enclose the |
|
parameters as they will be passed in a list. |
|
|
|
To call a function like ``f(x)`` then ``[x]`` |
|
should be the first argument to ``lambdify``; for this |
|
case a single ``x`` can also be used: |
|
|
|
>>> f = lambdify(x, x + 1) |
|
>>> f(1) |
|
2 |
|
>>> f = lambdify([x], x + 1) |
|
>>> f(1) |
|
2 |
|
|
|
To call a function like ``f(x, y)`` then ``[x, y]`` will |
|
be the first argument of the ``lambdify``: |
|
|
|
>>> f = lambdify([x, y], x + y) |
|
>>> f(1, 1) |
|
2 |
|
|
|
To call a function with a single 3-element tuple like |
|
``f((x, y, z))`` then ``[(x, y, z)]`` will be the first |
|
argument of the ``lambdify``: |
|
|
|
>>> f = lambdify([(x, y, z)], Eq(z**2, x**2 + y**2)) |
|
>>> f((3, 4, 5)) |
|
True |
|
|
|
If two args will be passed and the first is a scalar but |
|
the second is a tuple with two arguments then the items |
|
in the list should match that structure: |
|
|
|
>>> f = lambdify([x, (y, z)], x + y + z) |
|
>>> f(1, (2, 3)) |
|
6 |
|
|
|
expr : Expr |
|
An expression, list of expressions, or matrix to be evaluated. |
|
|
|
Lists may be nested. |
|
If the expression is a list, the output will also be a list. |
|
|
|
>>> f = lambdify(x, [x, [x + 1, x + 2]]) |
|
>>> f(1) |
|
[1, [2, 3]] |
|
|
|
If it is a matrix, an array will be returned (for the NumPy module). |
|
|
|
>>> from sympy import Matrix |
|
>>> f = lambdify(x, Matrix([x, x + 1])) |
|
>>> f(1) |
|
[[1] |
|
[2]] |
|
|
|
Note that the argument order here (variables then expression) is used |
|
to emulate the Python ``lambda`` keyword. ``lambdify(x, expr)`` works |
|
(roughly) like ``lambda x: expr`` |
|
(see :ref:`lambdify-how-it-works` below). |
|
|
|
modules : str, optional |
|
Specifies the numeric library to use. |
|
|
|
If not specified, *modules* defaults to: |
|
|
|
- ``["scipy", "numpy"]`` if SciPy is installed |
|
- ``["numpy"]`` if only NumPy is installed |
|
- ``["math","cmath", "mpmath", "sympy"]`` if neither is installed. |
|
|
|
That is, SymPy functions are replaced as far as possible by |
|
either ``scipy`` or ``numpy`` functions if available, and Python's |
|
standard library ``math`` and ``cmath``, or ``mpmath`` functions otherwise. |
|
|
|
*modules* can be one of the following types: |
|
|
|
- The strings ``"math"``, ``"cmath"``, ``"mpmath"``, ``"numpy"``, ``"numexpr"``, |
|
``"scipy"``, ``"sympy"``, or ``"tensorflow"`` or ``"jax"``. This uses the |
|
corresponding printer and namespace mapping for that module. |
|
- A module (e.g., ``math``). This uses the global namespace of the |
|
module. If the module is one of the above known modules, it will |
|
also use the corresponding printer and namespace mapping |
|
(i.e., ``modules=numpy`` is equivalent to ``modules="numpy"``). |
|
- A dictionary that maps names of SymPy functions to arbitrary |
|
functions |
|
(e.g., ``{'sin': custom_sin}``). |
|
- A list that contains a mix of the arguments above, with higher |
|
priority given to entries appearing first |
|
(e.g., to use the NumPy module but override the ``sin`` function |
|
with a custom version, you can use |
|
``[{'sin': custom_sin}, 'numpy']``). |
|
|
|
dummify : bool, optional |
|
Whether or not the variables in the provided expression that are not |
|
valid Python identifiers are substituted with dummy symbols. |
|
|
|
This allows for undefined functions like ``Function('f')(t)`` to be |
|
supplied as arguments. By default, the variables are only dummified |
|
if they are not valid Python identifiers. |
|
|
|
Set ``dummify=True`` to replace all arguments with dummy symbols |
|
(if ``args`` is not a string) - for example, to ensure that the |
|
arguments do not redefine any built-in names. |
|
|
|
cse : bool, or callable, optional |
|
Large expressions can be computed more efficiently when |
|
common subexpressions are identified and precomputed before |
|
being used multiple time. Finding the subexpressions will make |
|
creation of the 'lambdify' function slower, however. |
|
|
|
When ``True``, ``sympy.simplify.cse`` is used, otherwise (the default) |
|
the user may pass a function matching the ``cse`` signature. |
|
|
|
docstring_limit : int or None |
|
When lambdifying large expressions, a significant proportion of the time |
|
spent inside ``lambdify`` is spent producing a string representation of |
|
the expression for use in the automatically generated docstring of the |
|
returned function. For expressions containing hundreds or more nodes the |
|
resulting docstring often becomes so long and dense that it is difficult |
|
to read. To reduce the runtime of lambdify, the rendering of the full |
|
expression inside the docstring can be disabled. |
|
|
|
When ``None``, the full expression is rendered in the docstring. When |
|
``0`` or a negative ``int``, an ellipsis is rendering in the docstring |
|
instead of the expression. When a strictly positive ``int``, if the |
|
number of nodes in the expression exceeds ``docstring_limit`` an |
|
ellipsis is rendered in the docstring, otherwise a string representation |
|
of the expression is rendered as normal. The default is ``1000``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.utilities.lambdify import implemented_function |
|
>>> from sympy import sqrt, sin, Matrix |
|
>>> from sympy import Function |
|
>>> from sympy.abc import w, x, y, z |
|
|
|
>>> f = lambdify(x, x**2) |
|
>>> f(2) |
|
4 |
|
>>> f = lambdify((x, y, z), [z, y, x]) |
|
>>> f(1,2,3) |
|
[3, 2, 1] |
|
>>> f = lambdify(x, sqrt(x)) |
|
>>> f(4) |
|
2.0 |
|
>>> f = lambdify((x, y), sin(x*y)**2) |
|
>>> f(0, 5) |
|
0.0 |
|
>>> row = lambdify((x, y), Matrix((x, x + y)).T, modules='sympy') |
|
>>> row(1, 2) |
|
Matrix([[1, 3]]) |
|
|
|
``lambdify`` can be used to translate SymPy expressions into mpmath |
|
functions. This may be preferable to using ``evalf`` (which uses mpmath on |
|
the backend) in some cases. |
|
|
|
>>> f = lambdify(x, sin(x), 'mpmath') |
|
>>> f(1) |
|
0.8414709848078965 |
|
|
|
Tuple arguments are handled and the lambdified function should |
|
be called with the same type of arguments as were used to create |
|
the function: |
|
|
|
>>> f = lambdify((x, (y, z)), x + y) |
|
>>> f(1, (2, 4)) |
|
3 |
|
|
|
The ``flatten`` function can be used to always work with flattened |
|
arguments: |
|
|
|
>>> from sympy.utilities.iterables import flatten |
|
>>> args = w, (x, (y, z)) |
|
>>> vals = 1, (2, (3, 4)) |
|
>>> f = lambdify(flatten(args), w + x + y + z) |
|
>>> f(*flatten(vals)) |
|
10 |
|
|
|
Functions present in ``expr`` can also carry their own numerical |
|
implementations, in a callable attached to the ``_imp_`` attribute. This |
|
can be used with undefined functions using the ``implemented_function`` |
|
factory: |
|
|
|
>>> f = implemented_function(Function('f'), lambda x: x+1) |
|
>>> func = lambdify(x, f(x)) |
|
>>> func(4) |
|
5 |
|
|
|
``lambdify`` always prefers ``_imp_`` implementations to implementations |
|
in other namespaces, unless the ``use_imps`` input parameter is False. |
|
|
|
Usage with Tensorflow: |
|
|
|
>>> import tensorflow as tf |
|
>>> from sympy import Max, sin, lambdify |
|
>>> from sympy.abc import x |
|
|
|
>>> f = Max(x, sin(x)) |
|
>>> func = lambdify(x, f, 'tensorflow') |
|
|
|
After tensorflow v2, eager execution is enabled by default. |
|
If you want to get the compatible result across tensorflow v1 and v2 |
|
as same as this tutorial, run this line. |
|
|
|
>>> tf.compat.v1.enable_eager_execution() |
|
|
|
If you have eager execution enabled, you can get the result out |
|
immediately as you can use numpy. |
|
|
|
If you pass tensorflow objects, you may get an ``EagerTensor`` |
|
object instead of value. |
|
|
|
>>> result = func(tf.constant(1.0)) |
|
>>> print(result) |
|
tf.Tensor(1.0, shape=(), dtype=float32) |
|
>>> print(result.__class__) |
|
<class 'tensorflow.python.framework.ops.EagerTensor'> |
|
|
|
You can use ``.numpy()`` to get the numpy value of the tensor. |
|
|
|
>>> result.numpy() |
|
1.0 |
|
|
|
>>> var = tf.Variable(2.0) |
|
>>> result = func(var) # also works for tf.Variable and tf.Placeholder |
|
>>> result.numpy() |
|
2.0 |
|
|
|
And it works with any shape array. |
|
|
|
>>> tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]]) |
|
>>> result = func(tensor) |
|
>>> result.numpy() |
|
[[1. 2.] |
|
[3. 4.]] |
|
|
|
Notes |
|
===== |
|
|
|
- For functions involving large array calculations, numexpr can provide a |
|
significant speedup over numpy. Please note that the available functions |
|
for numexpr are more limited than numpy but can be expanded with |
|
``implemented_function`` and user defined subclasses of Function. If |
|
specified, numexpr may be the only option in modules. The official list |
|
of numexpr functions can be found at: |
|
https://numexpr.readthedocs.io/en/latest/user_guide.html#supported-functions |
|
|
|
- In the above examples, the generated functions can accept scalar |
|
values or numpy arrays as arguments. However, in some cases |
|
the generated function relies on the input being a numpy array: |
|
|
|
>>> import numpy |
|
>>> from sympy import Piecewise |
|
>>> from sympy.testing.pytest import ignore_warnings |
|
>>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "numpy") |
|
|
|
>>> with ignore_warnings(RuntimeWarning): |
|
... f(numpy.array([-1, 0, 1, 2])) |
|
[-1. 0. 1. 0.5] |
|
|
|
>>> f(0) |
|
Traceback (most recent call last): |
|
... |
|
ZeroDivisionError: division by zero |
|
|
|
In such cases, the input should be wrapped in a numpy array: |
|
|
|
>>> with ignore_warnings(RuntimeWarning): |
|
... float(f(numpy.array([0]))) |
|
0.0 |
|
|
|
Or if numpy functionality is not required another module can be used: |
|
|
|
>>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "math") |
|
>>> f(0) |
|
0 |
|
|
|
.. _lambdify-how-it-works: |
|
|
|
How it works |
|
============ |
|
|
|
When using this function, it helps a great deal to have an idea of what it |
|
is doing. At its core, lambdify is nothing more than a namespace |
|
translation, on top of a special printer that makes some corner cases work |
|
properly. |
|
|
|
To understand lambdify, first we must properly understand how Python |
|
namespaces work. Say we had two files. One called ``sin_cos_sympy.py``, |
|
with |
|
|
|
.. code:: python |
|
|
|
# sin_cos_sympy.py |
|
|
|
from sympy.functions.elementary.trigonometric import (cos, sin) |
|
|
|
def sin_cos(x): |
|
return sin(x) + cos(x) |
|
|
|
|
|
and one called ``sin_cos_numpy.py`` with |
|
|
|
.. code:: python |
|
|
|
# sin_cos_numpy.py |
|
|
|
from numpy import sin, cos |
|
|
|
def sin_cos(x): |
|
return sin(x) + cos(x) |
|
|
|
The two files define an identical function ``sin_cos``. However, in the |
|
first file, ``sin`` and ``cos`` are defined as the SymPy ``sin`` and |
|
``cos``. In the second, they are defined as the NumPy versions. |
|
|
|
If we were to import the first file and use the ``sin_cos`` function, we |
|
would get something like |
|
|
|
>>> from sin_cos_sympy import sin_cos # doctest: +SKIP |
|
>>> sin_cos(1) # doctest: +SKIP |
|
cos(1) + sin(1) |
|
|
|
On the other hand, if we imported ``sin_cos`` from the second file, we |
|
would get |
|
|
|
>>> from sin_cos_numpy import sin_cos # doctest: +SKIP |
|
>>> sin_cos(1) # doctest: +SKIP |
|
1.38177329068 |
|
|
|
In the first case we got a symbolic output, because it used the symbolic |
|
``sin`` and ``cos`` functions from SymPy. In the second, we got a numeric |
|
result, because ``sin_cos`` used the numeric ``sin`` and ``cos`` functions |
|
from NumPy. But notice that the versions of ``sin`` and ``cos`` that were |
|
used was not inherent to the ``sin_cos`` function definition. Both |
|
``sin_cos`` definitions are exactly the same. Rather, it was based on the |
|
names defined at the module where the ``sin_cos`` function was defined. |
|
|
|
The key point here is that when function in Python references a name that |
|
is not defined in the function, that name is looked up in the "global" |
|
namespace of the module where that function is defined. |
|
|
|
Now, in Python, we can emulate this behavior without actually writing a |
|
file to disk using the ``exec`` function. ``exec`` takes a string |
|
containing a block of Python code, and a dictionary that should contain |
|
the global variables of the module. It then executes the code "in" that |
|
dictionary, as if it were the module globals. The following is equivalent |
|
to the ``sin_cos`` defined in ``sin_cos_sympy.py``: |
|
|
|
>>> import sympy |
|
>>> module_dictionary = {'sin': sympy.sin, 'cos': sympy.cos} |
|
>>> exec(''' |
|
... def sin_cos(x): |
|
... return sin(x) + cos(x) |
|
... ''', module_dictionary) |
|
>>> sin_cos = module_dictionary['sin_cos'] |
|
>>> sin_cos(1) |
|
cos(1) + sin(1) |
|
|
|
and similarly with ``sin_cos_numpy``: |
|
|
|
>>> import numpy |
|
>>> module_dictionary = {'sin': numpy.sin, 'cos': numpy.cos} |
|
>>> exec(''' |
|
... def sin_cos(x): |
|
... return sin(x) + cos(x) |
|
... ''', module_dictionary) |
|
>>> sin_cos = module_dictionary['sin_cos'] |
|
>>> sin_cos(1) |
|
1.38177329068 |
|
|
|
So now we can get an idea of how ``lambdify`` works. The name "lambdify" |
|
comes from the fact that we can think of something like ``lambdify(x, |
|
sin(x) + cos(x), 'numpy')`` as ``lambda x: sin(x) + cos(x)``, where |
|
``sin`` and ``cos`` come from the ``numpy`` namespace. This is also why |
|
the symbols argument is first in ``lambdify``, as opposed to most SymPy |
|
functions where it comes after the expression: to better mimic the |
|
``lambda`` keyword. |
|
|
|
``lambdify`` takes the input expression (like ``sin(x) + cos(x)``) and |
|
|
|
1. Converts it to a string |
|
2. Creates a module globals dictionary based on the modules that are |
|
passed in (by default, it uses the NumPy module) |
|
3. Creates the string ``"def func({vars}): return {expr}"``, where ``{vars}`` is the |
|
list of variables separated by commas, and ``{expr}`` is the string |
|
created in step 1., then ``exec``s that string with the module globals |
|
namespace and returns ``func``. |
|
|
|
In fact, functions returned by ``lambdify`` support inspection. So you can |
|
see exactly how they are defined by using ``inspect.getsource``, or ``??`` if you |
|
are using IPython or the Jupyter notebook. |
|
|
|
>>> f = lambdify(x, sin(x) + cos(x)) |
|
>>> import inspect |
|
>>> print(inspect.getsource(f)) |
|
def _lambdifygenerated(x): |
|
return sin(x) + cos(x) |
|
|
|
This shows us the source code of the function, but not the namespace it |
|
was defined in. We can inspect that by looking at the ``__globals__`` |
|
attribute of ``f``: |
|
|
|
>>> f.__globals__['sin'] |
|
<ufunc 'sin'> |
|
>>> f.__globals__['cos'] |
|
<ufunc 'cos'> |
|
>>> f.__globals__['sin'] is numpy.sin |
|
True |
|
|
|
This shows us that ``sin`` and ``cos`` in the namespace of ``f`` will be |
|
``numpy.sin`` and ``numpy.cos``. |
|
|
|
Note that there are some convenience layers in each of these steps, but at |
|
the core, this is how ``lambdify`` works. Step 1 is done using the |
|
``LambdaPrinter`` printers defined in the printing module (see |
|
:mod:`sympy.printing.lambdarepr`). This allows different SymPy expressions |
|
to define how they should be converted to a string for different modules. |
|
You can change which printer ``lambdify`` uses by passing a custom printer |
|
in to the ``printer`` argument. |
|
|
|
Step 2 is augmented by certain translations. There are default |
|
translations for each module, but you can provide your own by passing a |
|
list to the ``modules`` argument. For instance, |
|
|
|
>>> def mysin(x): |
|
... print('taking the sin of', x) |
|
... return numpy.sin(x) |
|
... |
|
>>> f = lambdify(x, sin(x), [{'sin': mysin}, 'numpy']) |
|
>>> f(1) |
|
taking the sin of 1 |
|
0.8414709848078965 |
|
|
|
The globals dictionary is generated from the list by merging the |
|
dictionary ``{'sin': mysin}`` and the module dictionary for NumPy. The |
|
merging is done so that earlier items take precedence, which is why |
|
``mysin`` is used above instead of ``numpy.sin``. |
|
|
|
If you want to modify the way ``lambdify`` works for a given function, it |
|
is usually easiest to do so by modifying the globals dictionary as such. |
|
In more complicated cases, it may be necessary to create and pass in a |
|
custom printer. |
|
|
|
Finally, step 3 is augmented with certain convenience operations, such as |
|
the addition of a docstring. |
|
|
|
Understanding how ``lambdify`` works can make it easier to avoid certain |
|
gotchas when using it. For instance, a common mistake is to create a |
|
lambdified function for one module (say, NumPy), and pass it objects from |
|
another (say, a SymPy expression). |
|
|
|
For instance, say we create |
|
|
|
>>> from sympy.abc import x |
|
>>> f = lambdify(x, x + 1, 'numpy') |
|
|
|
Now if we pass in a NumPy array, we get that array plus 1 |
|
|
|
>>> import numpy |
|
>>> a = numpy.array([1, 2]) |
|
>>> f(a) |
|
[2 3] |
|
|
|
But what happens if you make the mistake of passing in a SymPy expression |
|
instead of a NumPy array: |
|
|
|
>>> f(x + 1) |
|
x + 2 |
|
|
|
This worked, but it was only by accident. Now take a different lambdified |
|
function: |
|
|
|
>>> from sympy import sin |
|
>>> g = lambdify(x, x + sin(x), 'numpy') |
|
|
|
This works as expected on NumPy arrays: |
|
|
|
>>> g(a) |
|
[1.84147098 2.90929743] |
|
|
|
But if we try to pass in a SymPy expression, it fails |
|
|
|
>>> g(x + 1) |
|
Traceback (most recent call last): |
|
... |
|
TypeError: loop of ufunc does not support argument 0 of type Add which has |
|
no callable sin method |
|
|
|
Now, let's look at what happened. The reason this fails is that ``g`` |
|
calls ``numpy.sin`` on the input expression, and ``numpy.sin`` does not |
|
know how to operate on a SymPy object. **As a general rule, NumPy |
|
functions do not know how to operate on SymPy expressions, and SymPy |
|
functions do not know how to operate on NumPy arrays. This is why lambdify |
|
exists: to provide a bridge between SymPy and NumPy.** |
|
|
|
However, why is it that ``f`` did work? That's because ``f`` does not call |
|
any functions, it only adds 1. So the resulting function that is created, |
|
``def _lambdifygenerated(x): return x + 1`` does not depend on the globals |
|
namespace it is defined in. Thus it works, but only by accident. A future |
|
version of ``lambdify`` may remove this behavior. |
|
|
|
Be aware that certain implementation details described here may change in |
|
future versions of SymPy. The API of passing in custom modules and |
|
printers will not change, but the details of how a lambda function is |
|
created may change. However, the basic idea will remain the same, and |
|
understanding it will be helpful to understanding the behavior of |
|
lambdify. |
|
|
|
**In general: you should create lambdified functions for one module (say, |
|
NumPy), and only pass it input types that are compatible with that module |
|
(say, NumPy arrays).** Remember that by default, if the ``module`` |
|
argument is not provided, ``lambdify`` creates functions using the NumPy |
|
and SciPy namespaces. |
|
""" |
|
from sympy.core.symbol import Symbol |
|
from sympy.core.expr import Expr |
|
|
|
|
|
if modules is None: |
|
try: |
|
_import("scipy") |
|
except ImportError: |
|
try: |
|
_import("numpy") |
|
except ImportError: |
|
|
|
|
|
|
|
modules = ["math", "mpmath", "sympy"] |
|
else: |
|
modules = ["numpy"] |
|
else: |
|
modules = ["numpy", "scipy"] |
|
|
|
|
|
namespaces = [] |
|
|
|
if use_imps: |
|
namespaces.append(_imp_namespace(expr)) |
|
|
|
if isinstance(modules, (dict, str)) or not hasattr(modules, '__iter__'): |
|
namespaces.append(modules) |
|
else: |
|
|
|
if _module_present('numexpr', modules) and len(modules) > 1: |
|
raise TypeError("numexpr must be the only item in 'modules'") |
|
namespaces += list(modules) |
|
|
|
namespace = {} |
|
for m in namespaces[::-1]: |
|
buf = _get_namespace(m) |
|
namespace.update(buf) |
|
|
|
if hasattr(expr, "atoms"): |
|
|
|
|
|
syms = expr.atoms(Symbol) |
|
for term in syms: |
|
namespace.update({str(term): term}) |
|
|
|
if printer is None: |
|
if _module_present('mpmath', namespaces): |
|
from sympy.printing.pycode import MpmathPrinter as Printer |
|
elif _module_present('scipy', namespaces): |
|
from sympy.printing.numpy import SciPyPrinter as Printer |
|
elif _module_present('numpy', namespaces): |
|
from sympy.printing.numpy import NumPyPrinter as Printer |
|
elif _module_present('cupy', namespaces): |
|
from sympy.printing.numpy import CuPyPrinter as Printer |
|
elif _module_present('jax', namespaces): |
|
from sympy.printing.numpy import JaxPrinter as Printer |
|
elif _module_present('numexpr', namespaces): |
|
from sympy.printing.lambdarepr import NumExprPrinter as Printer |
|
elif _module_present('tensorflow', namespaces): |
|
from sympy.printing.tensorflow import TensorflowPrinter as Printer |
|
elif _module_present('torch', namespaces): |
|
from sympy.printing.pytorch import TorchPrinter as Printer |
|
elif _module_present('sympy', namespaces): |
|
from sympy.printing.pycode import SymPyPrinter as Printer |
|
elif _module_present('cmath', namespaces): |
|
from sympy.printing.pycode import CmathPrinter as Printer |
|
else: |
|
from sympy.printing.pycode import PythonCodePrinter as Printer |
|
user_functions = {} |
|
for m in namespaces[::-1]: |
|
if isinstance(m, dict): |
|
for k in m: |
|
user_functions[k] = k |
|
printer = Printer({'fully_qualified_modules': False, 'inline': True, |
|
'allow_unknown_functions': True, |
|
'user_functions': user_functions}) |
|
|
|
if isinstance(args, set): |
|
sympy_deprecation_warning( |
|
""" |
|
Passing the function arguments to lambdify() as a set is deprecated. This |
|
leads to unpredictable results since sets are unordered. Instead, use a list |
|
or tuple for the function arguments. |
|
""", |
|
deprecated_since_version="1.6.3", |
|
active_deprecations_target="deprecated-lambdify-arguments-set", |
|
) |
|
|
|
|
|
iterable_args = (args,) if isinstance(args, Expr) else args |
|
names = [] |
|
|
|
|
|
callers_local_vars = inspect.currentframe().f_back.f_locals.items() |
|
for n, var in enumerate(iterable_args): |
|
if hasattr(var, 'name'): |
|
names.append(var.name) |
|
else: |
|
|
|
name_list = [var_name for var_name, var_val in callers_local_vars |
|
if var_val is var] |
|
if len(name_list) == 1: |
|
names.append(name_list[0]) |
|
else: |
|
|
|
names.append('arg_' + str(n)) |
|
|
|
|
|
funcname = '_lambdifygenerated' |
|
if _module_present('tensorflow', namespaces): |
|
funcprinter = _TensorflowEvaluatorPrinter(printer, dummify) |
|
else: |
|
funcprinter = _EvaluatorPrinter(printer, dummify) |
|
|
|
if cse == True: |
|
from sympy.simplify.cse_main import cse as _cse |
|
cses, _expr = _cse(expr, list=False) |
|
elif callable(cse): |
|
cses, _expr = cse(expr) |
|
else: |
|
cses, _expr = (), expr |
|
funcstr = funcprinter.doprint(funcname, iterable_args, _expr, cses=cses) |
|
|
|
|
|
imp_mod_lines = [] |
|
for mod, keys in (getattr(printer, 'module_imports', None) or {}).items(): |
|
for k in keys: |
|
if k not in namespace: |
|
ln = "from %s import %s" % (mod, k) |
|
try: |
|
exec(ln, {}, namespace) |
|
except ImportError: |
|
|
|
|
|
|
|
ln = "%s = %s.%s" % (k, mod, k) |
|
exec(ln, {}, namespace) |
|
imp_mod_lines.append(ln) |
|
|
|
|
|
namespace.update({'builtins':builtins, 'range':range}) |
|
|
|
funclocals = {} |
|
global _lambdify_generated_counter |
|
filename = '<lambdifygenerated-%s>' % _lambdify_generated_counter |
|
_lambdify_generated_counter += 1 |
|
c = compile(funcstr, filename, 'exec') |
|
exec(c, namespace, funclocals) |
|
|
|
linecache.cache[filename] = (len(funcstr), None, funcstr.splitlines(True), filename) |
|
|
|
|
|
def cleanup_linecache(filename): |
|
def _cleanup(): |
|
if filename in linecache.cache: |
|
del linecache.cache[filename] |
|
return _cleanup |
|
|
|
func = funclocals[funcname] |
|
|
|
weakref.finalize(func, cleanup_linecache(filename)) |
|
|
|
|
|
sig = "func({})".format(", ".join(str(i) for i in names)) |
|
sig = textwrap.fill(sig, subsequent_indent=' '*8) |
|
if _too_large_for_docstring(expr, docstring_limit): |
|
expr_str = "EXPRESSION REDACTED DUE TO LENGTH, (see lambdify's `docstring_limit`)" |
|
src_str = "SOURCE CODE REDACTED DUE TO LENGTH, (see lambdify's `docstring_limit`)" |
|
else: |
|
expr_str = str(expr) |
|
if len(expr_str) > 78: |
|
expr_str = textwrap.wrap(expr_str, 75)[0] + '...' |
|
src_str = funcstr |
|
func.__doc__ = ( |
|
"Created with lambdify. Signature:\n\n" |
|
"{sig}\n\n" |
|
"Expression:\n\n" |
|
"{expr}\n\n" |
|
"Source code:\n\n" |
|
"{src}\n\n" |
|
"Imported modules:\n\n" |
|
"{imp_mods}" |
|
).format(sig=sig, expr=expr_str, src=src_str, imp_mods='\n'.join(imp_mod_lines)) |
|
return func |
|
|
|
def _module_present(modname, modlist): |
|
if modname in modlist: |
|
return True |
|
for m in modlist: |
|
if hasattr(m, '__name__') and m.__name__ == modname: |
|
return True |
|
return False |
|
|
|
def _get_namespace(m): |
|
""" |
|
This is used by _lambdify to parse its arguments. |
|
""" |
|
if isinstance(m, str): |
|
_import(m) |
|
return MODULES[m][0] |
|
elif isinstance(m, dict): |
|
return m |
|
elif hasattr(m, "__dict__"): |
|
return m.__dict__ |
|
else: |
|
raise TypeError("Argument must be either a string, dict or module but it is: %s" % m) |
|
|
|
|
|
def _recursive_to_string(doprint, arg): |
|
"""Functions in lambdify accept both SymPy types and non-SymPy types such as python |
|
lists and tuples. This method ensures that we only call the doprint method of the |
|
printer with SymPy types (so that the printer safely can use SymPy-methods).""" |
|
from sympy.matrices.matrixbase import MatrixBase |
|
from sympy.core.basic import Basic |
|
|
|
if isinstance(arg, (Basic, MatrixBase)): |
|
return doprint(arg) |
|
elif iterable(arg): |
|
if isinstance(arg, list): |
|
left, right = "[", "]" |
|
elif isinstance(arg, tuple): |
|
left, right = "(", ",)" |
|
if not arg: |
|
return "()" |
|
else: |
|
raise NotImplementedError("unhandled type: %s, %s" % (type(arg), arg)) |
|
return left +', '.join(_recursive_to_string(doprint, e) for e in arg) + right |
|
elif isinstance(arg, str): |
|
return arg |
|
else: |
|
return doprint(arg) |
|
|
|
|
|
def lambdastr(args, expr, printer=None, dummify=None): |
|
""" |
|
Returns a string that can be evaluated to a lambda function. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y, z |
|
>>> from sympy.utilities.lambdify import lambdastr |
|
>>> lambdastr(x, x**2) |
|
'lambda x: (x**2)' |
|
>>> lambdastr((x,y,z), [z,y,x]) |
|
'lambda x,y,z: ([z, y, x])' |
|
|
|
Although tuples may not appear as arguments to lambda in Python 3, |
|
lambdastr will create a lambda function that will unpack the original |
|
arguments so that nested arguments can be handled: |
|
|
|
>>> lambdastr((x, (y, z)), x + y) |
|
'lambda _0,_1: (lambda x,y,z: (x + y))(_0,_1[0],_1[1])' |
|
""" |
|
|
|
from sympy.matrices import DeferredVector |
|
from sympy.core.basic import Basic |
|
from sympy.core.function import (Derivative, Function) |
|
from sympy.core.symbol import (Dummy, Symbol) |
|
from sympy.core.sympify import sympify |
|
|
|
if printer is not None: |
|
if inspect.isfunction(printer): |
|
lambdarepr = printer |
|
else: |
|
if inspect.isclass(printer): |
|
lambdarepr = lambda expr: printer().doprint(expr) |
|
else: |
|
lambdarepr = lambda expr: printer.doprint(expr) |
|
else: |
|
|
|
from sympy.printing.lambdarepr import lambdarepr |
|
|
|
def sub_args(args, dummies_dict): |
|
if isinstance(args, str): |
|
return args |
|
elif isinstance(args, DeferredVector): |
|
return str(args) |
|
elif iterable(args): |
|
dummies = flatten([sub_args(a, dummies_dict) for a in args]) |
|
return ",".join(str(a) for a in dummies) |
|
else: |
|
|
|
if isinstance(args, (Function, Symbol, Derivative)): |
|
dummies = Dummy() |
|
dummies_dict.update({args : dummies}) |
|
return str(dummies) |
|
else: |
|
return str(args) |
|
|
|
def sub_expr(expr, dummies_dict): |
|
expr = sympify(expr) |
|
|
|
if isinstance(expr, Basic): |
|
expr = expr.xreplace(dummies_dict) |
|
|
|
elif isinstance(expr, list): |
|
expr = [sub_expr(a, dummies_dict) for a in expr] |
|
return expr |
|
|
|
|
|
def isiter(l): |
|
return iterable(l, exclude=(str, DeferredVector, NotIterable)) |
|
|
|
def flat_indexes(iterable): |
|
n = 0 |
|
|
|
for el in iterable: |
|
if isiter(el): |
|
for ndeep in flat_indexes(el): |
|
yield (n,) + ndeep |
|
else: |
|
yield (n,) |
|
|
|
n += 1 |
|
|
|
if dummify is None: |
|
dummify = any(isinstance(a, Basic) and |
|
a.atoms(Function, Derivative) for a in ( |
|
args if isiter(args) else [args])) |
|
|
|
if isiter(args) and any(isiter(i) for i in args): |
|
dum_args = [str(Dummy(str(i))) for i in range(len(args))] |
|
|
|
indexed_args = ','.join([ |
|
dum_args[ind[0]] + ''.join(["[%s]" % k for k in ind[1:]]) |
|
for ind in flat_indexes(args)]) |
|
|
|
lstr = lambdastr(flatten(args), expr, printer=printer, dummify=dummify) |
|
|
|
return 'lambda %s: (%s)(%s)' % (','.join(dum_args), lstr, indexed_args) |
|
|
|
dummies_dict = {} |
|
if dummify: |
|
args = sub_args(args, dummies_dict) |
|
else: |
|
if isinstance(args, str): |
|
pass |
|
elif iterable(args, exclude=DeferredVector): |
|
args = ",".join(str(a) for a in args) |
|
|
|
|
|
if dummify: |
|
if isinstance(expr, str): |
|
pass |
|
else: |
|
expr = sub_expr(expr, dummies_dict) |
|
expr = _recursive_to_string(lambdarepr, expr) |
|
return "lambda %s: (%s)" % (args, expr) |
|
|
|
class _EvaluatorPrinter: |
|
def __init__(self, printer=None, dummify=False): |
|
self._dummify = dummify |
|
|
|
|
|
from sympy.printing.lambdarepr import LambdaPrinter |
|
|
|
if printer is None: |
|
printer = LambdaPrinter() |
|
|
|
if inspect.isfunction(printer): |
|
self._exprrepr = printer |
|
else: |
|
if inspect.isclass(printer): |
|
printer = printer() |
|
|
|
self._exprrepr = printer.doprint |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._argrepr = LambdaPrinter().doprint |
|
|
|
def doprint(self, funcname, args, expr, *, cses=()): |
|
""" |
|
Returns the function definition code as a string. |
|
""" |
|
from sympy.core.symbol import Dummy |
|
|
|
funcbody = [] |
|
|
|
if not iterable(args): |
|
args = [args] |
|
|
|
if cses: |
|
cses = list(cses) |
|
subvars, subexprs = zip(*cses) |
|
exprs = [expr] + list(subexprs) |
|
argstrs, exprs = self._preprocess(args, exprs, cses=cses) |
|
expr, subexprs = exprs[0], exprs[1:] |
|
cses = zip(subvars, subexprs) |
|
else: |
|
argstrs, expr = self._preprocess(args, expr) |
|
|
|
|
|
funcargs = [] |
|
unpackings = [] |
|
|
|
for argstr in argstrs: |
|
if iterable(argstr): |
|
funcargs.append(self._argrepr(Dummy())) |
|
unpackings.extend(self._print_unpacking(argstr, funcargs[-1])) |
|
else: |
|
funcargs.append(argstr) |
|
|
|
funcsig = 'def {}({}):'.format(funcname, ', '.join(funcargs)) |
|
|
|
|
|
funcbody.extend(self._print_funcargwrapping(funcargs)) |
|
|
|
funcbody.extend(unpackings) |
|
|
|
for s, e in cses: |
|
if e is None: |
|
funcbody.append('del {}'.format(self._exprrepr(s))) |
|
else: |
|
funcbody.append('{} = {}'.format(self._exprrepr(s), self._exprrepr(e))) |
|
|
|
|
|
subs_assignments = [] |
|
expr = self._handle_Subs(expr, out=subs_assignments) |
|
for lhs, rhs in subs_assignments: |
|
funcbody.append('{} = {}'.format(self._exprrepr(lhs), self._exprrepr(rhs))) |
|
|
|
str_expr = _recursive_to_string(self._exprrepr, expr) |
|
|
|
if '\n' in str_expr: |
|
str_expr = '({})'.format(str_expr) |
|
funcbody.append('return {}'.format(str_expr)) |
|
|
|
funclines = [funcsig] |
|
funclines.extend([' ' + line for line in funcbody]) |
|
|
|
return '\n'.join(funclines) + '\n' |
|
|
|
@classmethod |
|
def _is_safe_ident(cls, ident): |
|
return isinstance(ident, str) and ident.isidentifier() \ |
|
and not keyword.iskeyword(ident) |
|
|
|
def _preprocess(self, args, expr, cses=(), _dummies_dict=None): |
|
"""Preprocess args, expr to replace arguments that do not map |
|
to valid Python identifiers. |
|
|
|
Returns string form of args, and updated expr. |
|
""" |
|
from sympy.core.basic import Basic |
|
from sympy.core.sorting import ordered |
|
from sympy.core.function import (Derivative, Function) |
|
from sympy.core.symbol import Dummy, uniquely_named_symbol |
|
from sympy.matrices import DeferredVector |
|
from sympy.core.expr import Expr |
|
|
|
|
|
|
|
|
|
dummify = self._dummify or any( |
|
isinstance(arg, Dummy) for arg in flatten(args)) |
|
|
|
argstrs = [None]*len(args) |
|
if _dummies_dict is None: |
|
_dummies_dict = {} |
|
|
|
def update_dummies(arg, dummy): |
|
_dummies_dict[arg] = dummy |
|
for repl, sub in cses: |
|
arg = arg.xreplace({sub: repl}) |
|
_dummies_dict[arg] = dummy |
|
|
|
for arg, i in reversed(list(ordered(zip(args, range(len(args)))))): |
|
if iterable(arg): |
|
s, expr = self._preprocess(arg, expr, cses=cses, _dummies_dict=_dummies_dict) |
|
elif isinstance(arg, DeferredVector): |
|
s = str(arg) |
|
elif isinstance(arg, Basic) and arg.is_symbol: |
|
s = str(arg) |
|
if dummify or not self._is_safe_ident(s): |
|
dummy = Dummy() |
|
if isinstance(expr, Expr): |
|
dummy = uniquely_named_symbol( |
|
dummy.name, expr, modify=lambda s: '_' + s) |
|
s = self._argrepr(dummy) |
|
update_dummies(arg, dummy) |
|
expr = self._subexpr(expr, _dummies_dict) |
|
elif dummify or isinstance(arg, (Function, Derivative)): |
|
dummy = Dummy() |
|
s = self._argrepr(dummy) |
|
update_dummies(arg, dummy) |
|
expr = self._subexpr(expr, _dummies_dict) |
|
else: |
|
s = str(arg) |
|
argstrs[i] = s |
|
return argstrs, expr |
|
|
|
def _subexpr(self, expr, dummies_dict): |
|
from sympy.matrices import DeferredVector |
|
from sympy.core.sympify import sympify |
|
|
|
expr = sympify(expr) |
|
xreplace = getattr(expr, 'xreplace', None) |
|
if xreplace is not None: |
|
expr = xreplace(dummies_dict) |
|
else: |
|
if isinstance(expr, DeferredVector): |
|
pass |
|
elif isinstance(expr, dict): |
|
k = [self._subexpr(sympify(a), dummies_dict) for a in expr.keys()] |
|
v = [self._subexpr(sympify(a), dummies_dict) for a in expr.values()] |
|
expr = dict(zip(k, v)) |
|
elif isinstance(expr, tuple): |
|
expr = tuple(self._subexpr(sympify(a), dummies_dict) for a in expr) |
|
elif isinstance(expr, list): |
|
expr = [self._subexpr(sympify(a), dummies_dict) for a in expr] |
|
return expr |
|
|
|
def _print_funcargwrapping(self, args): |
|
"""Generate argument wrapping code. |
|
|
|
args is the argument list of the generated function (strings). |
|
|
|
Return value is a list of lines of code that will be inserted at |
|
the beginning of the function definition. |
|
""" |
|
return [] |
|
|
|
def _print_unpacking(self, unpackto, arg): |
|
"""Generate argument unpacking code. |
|
|
|
arg is the function argument to be unpacked (a string), and |
|
unpackto is a list or nested lists of the variable names (strings) to |
|
unpack to. |
|
""" |
|
def unpack_lhs(lvalues): |
|
return '[{}]'.format(', '.join( |
|
unpack_lhs(val) if iterable(val) else val for val in lvalues)) |
|
|
|
return ['{} = {}'.format(unpack_lhs(unpackto), arg)] |
|
|
|
def _handle_Subs(self, expr, out): |
|
"""Any instance of Subs is extracted and returned as assignment pairs.""" |
|
from sympy.core.basic import Basic |
|
from sympy.core.function import Subs |
|
from sympy.core.symbol import Dummy |
|
from sympy.matrices.matrixbase import MatrixBase |
|
|
|
def _replace(ex, variables, point): |
|
safe = {} |
|
for lhs, rhs in zip(variables, point): |
|
dummy = Dummy() |
|
safe[lhs] = dummy |
|
out.append((dummy, rhs)) |
|
return ex.xreplace(safe) |
|
|
|
if isinstance(expr, (Basic, MatrixBase)): |
|
expr = expr.replace(Subs, _replace) |
|
elif iterable(expr): |
|
expr = type(expr)([self._handle_Subs(e, out) for e in expr]) |
|
return expr |
|
|
|
class _TensorflowEvaluatorPrinter(_EvaluatorPrinter): |
|
def _print_unpacking(self, lvalues, rvalue): |
|
"""Generate argument unpacking code. |
|
|
|
This method is used when the input value is not iterable, |
|
but can be indexed (see issue #14655). |
|
""" |
|
|
|
def flat_indexes(elems): |
|
n = 0 |
|
|
|
for el in elems: |
|
if iterable(el): |
|
for ndeep in flat_indexes(el): |
|
yield (n,) + ndeep |
|
else: |
|
yield (n,) |
|
|
|
n += 1 |
|
|
|
indexed = ', '.join('{}[{}]'.format(rvalue, ']['.join(map(str, ind))) |
|
for ind in flat_indexes(lvalues)) |
|
|
|
return ['[{}] = [{}]'.format(', '.join(flatten(lvalues)), indexed)] |
|
|
|
def _imp_namespace(expr, namespace=None): |
|
""" Return namespace dict with function implementations |
|
|
|
We need to search for functions in anything that can be thrown at |
|
us - that is - anything that could be passed as ``expr``. Examples |
|
include SymPy expressions, as well as tuples, lists and dicts that may |
|
contain SymPy expressions. |
|
|
|
Parameters |
|
---------- |
|
expr : object |
|
Something passed to lambdify, that will generate valid code from |
|
``str(expr)``. |
|
namespace : None or mapping |
|
Namespace to fill. None results in new empty dict |
|
|
|
Returns |
|
------- |
|
namespace : dict |
|
dict with keys of implemented function names within ``expr`` and |
|
corresponding values being the numerical implementation of |
|
function |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x |
|
>>> from sympy.utilities.lambdify import implemented_function, _imp_namespace |
|
>>> from sympy import Function |
|
>>> f = implemented_function(Function('f'), lambda x: x+1) |
|
>>> g = implemented_function(Function('g'), lambda x: x*10) |
|
>>> namespace = _imp_namespace(f(g(x))) |
|
>>> sorted(namespace.keys()) |
|
['f', 'g'] |
|
""" |
|
|
|
from sympy.core.function import FunctionClass |
|
if namespace is None: |
|
namespace = {} |
|
|
|
if is_sequence(expr): |
|
for arg in expr: |
|
_imp_namespace(arg, namespace) |
|
return namespace |
|
elif isinstance(expr, dict): |
|
for key, val in expr.items(): |
|
|
|
_imp_namespace(key, namespace) |
|
_imp_namespace(val, namespace) |
|
return namespace |
|
|
|
func = getattr(expr, 'func', None) |
|
if isinstance(func, FunctionClass): |
|
imp = getattr(func, '_imp_', None) |
|
if imp is not None: |
|
name = expr.func.__name__ |
|
if name in namespace and namespace[name] != imp: |
|
raise ValueError('We found more than one ' |
|
'implementation with name ' |
|
'"%s"' % name) |
|
namespace[name] = imp |
|
|
|
if hasattr(expr, 'args'): |
|
for arg in expr.args: |
|
_imp_namespace(arg, namespace) |
|
return namespace |
|
|
|
|
|
def implemented_function(symfunc, implementation): |
|
""" Add numerical ``implementation`` to function ``symfunc``. |
|
|
|
``symfunc`` can be an ``UndefinedFunction`` instance, or a name string. |
|
In the latter case we create an ``UndefinedFunction`` instance with that |
|
name. |
|
|
|
Be aware that this is a quick workaround, not a general method to create |
|
special symbolic functions. If you want to create a symbolic function to be |
|
used by all the machinery of SymPy you should subclass the ``Function`` |
|
class. |
|
|
|
Parameters |
|
---------- |
|
symfunc : ``str`` or ``UndefinedFunction`` instance |
|
If ``str``, then create new ``UndefinedFunction`` with this as |
|
name. If ``symfunc`` is an Undefined function, create a new function |
|
with the same name and the implemented function attached. |
|
implementation : callable |
|
numerical implementation to be called by ``evalf()`` or ``lambdify`` |
|
|
|
Returns |
|
------- |
|
afunc : sympy.FunctionClass instance |
|
function with attached implementation |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x |
|
>>> from sympy.utilities.lambdify import implemented_function |
|
>>> from sympy import lambdify |
|
>>> f = implemented_function('f', lambda x: x+1) |
|
>>> lam_f = lambdify(x, f(x)) |
|
>>> lam_f(4) |
|
5 |
|
""" |
|
|
|
from sympy.core.function import UndefinedFunction |
|
|
|
kwargs = {} |
|
if isinstance(symfunc, UndefinedFunction): |
|
kwargs = symfunc._kwargs |
|
symfunc = symfunc.__name__ |
|
if isinstance(symfunc, str): |
|
|
|
|
|
symfunc = UndefinedFunction( |
|
symfunc, _imp_=staticmethod(implementation), **kwargs) |
|
elif not isinstance(symfunc, UndefinedFunction): |
|
raise ValueError(filldedent(''' |
|
symfunc should be either a string or |
|
an UndefinedFunction instance.''')) |
|
return symfunc |
|
|
|
|
|
def _too_large_for_docstring(expr, limit): |
|
"""Decide whether an ``Expr`` is too large to be fully rendered in a |
|
``lambdify`` docstring. |
|
|
|
This is a fast alternative to ``count_ops``, which can become prohibitively |
|
slow for large expressions, because in this instance we only care whether |
|
``limit`` is exceeded rather than counting the exact number of nodes in the |
|
expression. |
|
|
|
Parameters |
|
========== |
|
expr : ``Expr``, (nested) ``list`` of ``Expr``, or ``Matrix`` |
|
The same objects that can be passed to the ``expr`` argument of |
|
``lambdify``. |
|
limit : ``int`` or ``None`` |
|
The threshold above which an expression contains too many nodes to be |
|
usefully rendered in the docstring. If ``None`` then there is no limit. |
|
|
|
Returns |
|
======= |
|
bool |
|
``True`` if the number of nodes in the expression exceeds the limit, |
|
``False`` otherwise. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y, z |
|
>>> from sympy.utilities.lambdify import _too_large_for_docstring |
|
>>> expr = x |
|
>>> _too_large_for_docstring(expr, None) |
|
False |
|
>>> _too_large_for_docstring(expr, 100) |
|
False |
|
>>> _too_large_for_docstring(expr, 1) |
|
False |
|
>>> _too_large_for_docstring(expr, 0) |
|
True |
|
>>> _too_large_for_docstring(expr, -1) |
|
True |
|
|
|
Does this split it? |
|
|
|
>>> expr = [x, y, z] |
|
>>> _too_large_for_docstring(expr, None) |
|
False |
|
>>> _too_large_for_docstring(expr, 100) |
|
False |
|
>>> _too_large_for_docstring(expr, 1) |
|
True |
|
>>> _too_large_for_docstring(expr, 0) |
|
True |
|
>>> _too_large_for_docstring(expr, -1) |
|
True |
|
|
|
>>> expr = [x, [y], z, [[x+y], [x*y*z, [x+y+z]]]] |
|
>>> _too_large_for_docstring(expr, None) |
|
False |
|
>>> _too_large_for_docstring(expr, 100) |
|
False |
|
>>> _too_large_for_docstring(expr, 1) |
|
True |
|
>>> _too_large_for_docstring(expr, 0) |
|
True |
|
>>> _too_large_for_docstring(expr, -1) |
|
True |
|
|
|
>>> expr = ((x + y + z)**5).expand() |
|
>>> _too_large_for_docstring(expr, None) |
|
False |
|
>>> _too_large_for_docstring(expr, 100) |
|
True |
|
>>> _too_large_for_docstring(expr, 1) |
|
True |
|
>>> _too_large_for_docstring(expr, 0) |
|
True |
|
>>> _too_large_for_docstring(expr, -1) |
|
True |
|
|
|
>>> from sympy import Matrix |
|
>>> expr = Matrix([[(x + y + z), ((x + y + z)**2).expand(), |
|
... ((x + y + z)**3).expand(), ((x + y + z)**4).expand()]]) |
|
>>> _too_large_for_docstring(expr, None) |
|
False |
|
>>> _too_large_for_docstring(expr, 1000) |
|
False |
|
>>> _too_large_for_docstring(expr, 100) |
|
True |
|
>>> _too_large_for_docstring(expr, 1) |
|
True |
|
>>> _too_large_for_docstring(expr, 0) |
|
True |
|
>>> _too_large_for_docstring(expr, -1) |
|
True |
|
|
|
""" |
|
|
|
from sympy.core.traversal import postorder_traversal |
|
|
|
if limit is None: |
|
return False |
|
|
|
i = 0 |
|
for _ in postorder_traversal(expr): |
|
i += 1 |
|
if i > limit: |
|
return True |
|
return False |
|
|