|
""" Unit tests for Hyper_Function""" |
|
from sympy.core import symbols, Dummy, Tuple, S, Rational |
|
from sympy.functions import hyper |
|
|
|
from sympy.simplify.hyperexpand import Hyper_Function |
|
|
|
def test_attrs(): |
|
a, b = symbols('a, b', cls=Dummy) |
|
f = Hyper_Function([2, a], [b]) |
|
assert f.ap == Tuple(2, a) |
|
assert f.bq == Tuple(b) |
|
assert f.args == (Tuple(2, a), Tuple(b)) |
|
assert f.sizes == (2, 1) |
|
|
|
def test_call(): |
|
a, b, x = symbols('a, b, x', cls=Dummy) |
|
f = Hyper_Function([2, a], [b]) |
|
assert f(x) == hyper([2, a], [b], x) |
|
|
|
def test_has(): |
|
a, b, c = symbols('a, b, c', cls=Dummy) |
|
f = Hyper_Function([2, -a], [b]) |
|
assert f.has(a) |
|
assert f.has(Tuple(b)) |
|
assert not f.has(c) |
|
|
|
def test_eq(): |
|
assert Hyper_Function([1], []) == Hyper_Function([1], []) |
|
assert (Hyper_Function([1], []) != Hyper_Function([1], [])) is False |
|
assert Hyper_Function([1], []) != Hyper_Function([2], []) |
|
assert Hyper_Function([1], []) != Hyper_Function([1, 2], []) |
|
assert Hyper_Function([1], []) != Hyper_Function([1], [2]) |
|
|
|
def test_gamma(): |
|
assert Hyper_Function([2, 3], [-1]).gamma == 0 |
|
assert Hyper_Function([-2, -3], [-1]).gamma == 2 |
|
n = Dummy(integer=True) |
|
assert Hyper_Function([-1, n, 1], []).gamma == 1 |
|
assert Hyper_Function([-1, -n, 1], []).gamma == 1 |
|
p = Dummy(integer=True, positive=True) |
|
assert Hyper_Function([-1, p, 1], []).gamma == 1 |
|
assert Hyper_Function([-1, -p, 1], []).gamma == 2 |
|
|
|
def test_suitable_origin(): |
|
assert Hyper_Function((S.Half,), (Rational(3, 2),))._is_suitable_origin() is True |
|
assert Hyper_Function((S.Half,), (S.Half,))._is_suitable_origin() is False |
|
assert Hyper_Function((S.Half,), (Rational(-1, 2),))._is_suitable_origin() is False |
|
assert Hyper_Function((S.Half,), (0,))._is_suitable_origin() is False |
|
assert Hyper_Function((S.Half,), (-1, 1,))._is_suitable_origin() is False |
|
assert Hyper_Function((S.Half, 0), (1,))._is_suitable_origin() is False |
|
assert Hyper_Function((S.Half, 1), |
|
(2, Rational(-2, 3)))._is_suitable_origin() is True |
|
assert Hyper_Function((S.Half, 1), |
|
(2, Rational(-2, 3), Rational(3, 2)))._is_suitable_origin() is True |
|
|