|
""" |
|
R code printer |
|
|
|
The RCodePrinter converts single SymPy expressions into single R expressions, |
|
using the functions defined in math.h where possible. |
|
|
|
|
|
|
|
""" |
|
|
|
from __future__ import annotations |
|
from typing import Any |
|
|
|
from sympy.core.numbers import equal_valued |
|
from sympy.printing.codeprinter import CodePrinter |
|
from sympy.printing.precedence import precedence, PRECEDENCE |
|
from sympy.sets.fancysets import Range |
|
|
|
|
|
|
|
known_functions = { |
|
|
|
"Abs": "abs", |
|
"sin": "sin", |
|
"cos": "cos", |
|
"tan": "tan", |
|
"asin": "asin", |
|
"acos": "acos", |
|
"atan": "atan", |
|
"atan2": "atan2", |
|
"exp": "exp", |
|
"log": "log", |
|
"erf": "erf", |
|
"sinh": "sinh", |
|
"cosh": "cosh", |
|
"tanh": "tanh", |
|
"asinh": "asinh", |
|
"acosh": "acosh", |
|
"atanh": "atanh", |
|
"floor": "floor", |
|
"ceiling": "ceiling", |
|
"sign": "sign", |
|
"Max": "max", |
|
"Min": "min", |
|
"factorial": "factorial", |
|
"gamma": "gamma", |
|
"digamma": "digamma", |
|
"trigamma": "trigamma", |
|
"beta": "beta", |
|
"sqrt": "sqrt", |
|
} |
|
|
|
|
|
|
|
|
|
reserved_words = ['if', |
|
'else', |
|
'repeat', |
|
'while', |
|
'function', |
|
'for', |
|
'in', |
|
'next', |
|
'break', |
|
'TRUE', |
|
'FALSE', |
|
'NULL', |
|
'Inf', |
|
'NaN', |
|
'NA', |
|
'NA_integer_', |
|
'NA_real_', |
|
'NA_complex_', |
|
'NA_character_', |
|
'volatile'] |
|
|
|
|
|
class RCodePrinter(CodePrinter): |
|
"""A printer to convert SymPy expressions to strings of R code""" |
|
printmethod = "_rcode" |
|
language = "R" |
|
|
|
_default_settings: dict[str, Any] = dict(CodePrinter._default_settings, **{ |
|
'precision': 15, |
|
'user_functions': {}, |
|
'contract': True, |
|
'dereference': set(), |
|
}) |
|
_operators = { |
|
'and': '&', |
|
'or': '|', |
|
'not': '!', |
|
} |
|
|
|
_relationals: dict[str, str] = {} |
|
|
|
def __init__(self, settings={}): |
|
CodePrinter.__init__(self, settings) |
|
self.known_functions = dict(known_functions) |
|
userfuncs = settings.get('user_functions', {}) |
|
self.known_functions.update(userfuncs) |
|
self._dereference = set(settings.get('dereference', [])) |
|
self.reserved_words = set(reserved_words) |
|
|
|
def _rate_index_position(self, p): |
|
return p*5 |
|
|
|
def _get_statement(self, codestring): |
|
return "%s;" % codestring |
|
|
|
def _get_comment(self, text): |
|
return "// {}".format(text) |
|
|
|
def _declare_number_const(self, name, value): |
|
return "{} = {};".format(name, value) |
|
|
|
def _format_code(self, lines): |
|
return self.indent_code(lines) |
|
|
|
def _traverse_matrix_indices(self, mat): |
|
rows, cols = mat.shape |
|
return ((i, j) for i in range(rows) for j in range(cols)) |
|
|
|
def _get_loop_opening_ending(self, indices): |
|
"""Returns a tuple (open_lines, close_lines) containing lists of codelines |
|
""" |
|
open_lines = [] |
|
close_lines = [] |
|
loopstart = "for (%(var)s in %(start)s:%(end)s){" |
|
for i in indices: |
|
|
|
open_lines.append(loopstart % { |
|
'var': self._print(i.label), |
|
'start': self._print(i.lower+1), |
|
'end': self._print(i.upper + 1)}) |
|
close_lines.append("}") |
|
return open_lines, close_lines |
|
|
|
def _print_Pow(self, expr): |
|
if "Pow" in self.known_functions: |
|
return self._print_Function(expr) |
|
PREC = precedence(expr) |
|
if equal_valued(expr.exp, -1): |
|
return '1.0/%s' % (self.parenthesize(expr.base, PREC)) |
|
elif equal_valued(expr.exp, 0.5): |
|
return 'sqrt(%s)' % self._print(expr.base) |
|
else: |
|
return '%s^%s' % (self.parenthesize(expr.base, PREC), |
|
self.parenthesize(expr.exp, PREC)) |
|
|
|
|
|
def _print_Rational(self, expr): |
|
p, q = int(expr.p), int(expr.q) |
|
return '%d.0/%d.0' % (p, q) |
|
|
|
def _print_Indexed(self, expr): |
|
inds = [ self._print(i) for i in expr.indices ] |
|
return "%s[%s]" % (self._print(expr.base.label), ", ".join(inds)) |
|
|
|
def _print_Exp1(self, expr): |
|
return "exp(1)" |
|
|
|
def _print_Pi(self, expr): |
|
return 'pi' |
|
|
|
def _print_Infinity(self, expr): |
|
return 'Inf' |
|
|
|
def _print_NegativeInfinity(self, expr): |
|
return '-Inf' |
|
|
|
def _print_Assignment(self, expr): |
|
from sympy.codegen.ast import Assignment |
|
|
|
from sympy.matrices.expressions.matexpr import MatrixSymbol |
|
from sympy.tensor.indexed import IndexedBase |
|
lhs = expr.lhs |
|
rhs = expr.rhs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if isinstance(lhs, MatrixSymbol): |
|
|
|
|
|
lines = [] |
|
for (i, j) in self._traverse_matrix_indices(lhs): |
|
temp = Assignment(lhs[i, j], rhs[i, j]) |
|
code0 = self._print(temp) |
|
lines.append(code0) |
|
return "\n".join(lines) |
|
elif self._settings["contract"] and (lhs.has(IndexedBase) or |
|
rhs.has(IndexedBase)): |
|
|
|
|
|
return self._doprint_loops(rhs, lhs) |
|
else: |
|
lhs_code = self._print(lhs) |
|
rhs_code = self._print(rhs) |
|
return self._get_statement("%s = %s" % (lhs_code, rhs_code)) |
|
|
|
def _print_Piecewise(self, expr): |
|
|
|
|
|
if expr.args[-1].cond == True: |
|
last_line = "%s" % self._print(expr.args[-1].expr) |
|
else: |
|
last_line = "ifelse(%s,%s,NA)" % (self._print(expr.args[-1].cond), self._print(expr.args[-1].expr)) |
|
code=last_line |
|
for e, c in reversed(expr.args[:-1]): |
|
code= "ifelse(%s,%s," % (self._print(c), self._print(e))+code+")" |
|
return(code) |
|
|
|
def _print_ITE(self, expr): |
|
from sympy.functions import Piecewise |
|
return self._print(expr.rewrite(Piecewise)) |
|
|
|
def _print_MatrixElement(self, expr): |
|
return "{}[{}]".format(self.parenthesize(expr.parent, PRECEDENCE["Atom"], |
|
strict=True), expr.j + expr.i*expr.parent.shape[1]) |
|
|
|
def _print_Symbol(self, expr): |
|
name = super()._print_Symbol(expr) |
|
if expr in self._dereference: |
|
return '(*{})'.format(name) |
|
else: |
|
return name |
|
|
|
def _print_Relational(self, expr): |
|
lhs_code = self._print(expr.lhs) |
|
rhs_code = self._print(expr.rhs) |
|
op = expr.rel_op |
|
return "{} {} {}".format(lhs_code, op, rhs_code) |
|
|
|
def _print_AugmentedAssignment(self, expr): |
|
lhs_code = self._print(expr.lhs) |
|
op = expr.op |
|
rhs_code = self._print(expr.rhs) |
|
return "{} {} {};".format(lhs_code, op, rhs_code) |
|
|
|
def _print_For(self, expr): |
|
target = self._print(expr.target) |
|
if isinstance(expr.iterable, Range): |
|
start, stop, step = expr.iterable.args |
|
else: |
|
raise NotImplementedError("Only iterable currently supported is Range") |
|
body = self._print(expr.body) |
|
return 'for({target} in seq(from={start}, to={stop}, by={step}){{\n{body}\n}}'.format(target=target, start=start, |
|
stop=stop-1, step=step, body=body) |
|
|
|
|
|
def indent_code(self, code): |
|
"""Accepts a string of code or a list of code lines""" |
|
|
|
if isinstance(code, str): |
|
code_lines = self.indent_code(code.splitlines(True)) |
|
return ''.join(code_lines) |
|
|
|
tab = " " |
|
inc_token = ('{', '(', '{\n', '(\n') |
|
dec_token = ('}', ')') |
|
|
|
code = [ line.lstrip(' \t') for line in code ] |
|
|
|
increase = [ int(any(map(line.endswith, inc_token))) for line in code ] |
|
decrease = [ int(any(map(line.startswith, dec_token))) |
|
for line in code ] |
|
|
|
pretty = [] |
|
level = 0 |
|
for n, line in enumerate(code): |
|
if line in ('', '\n'): |
|
pretty.append(line) |
|
continue |
|
level -= decrease[n] |
|
pretty.append("%s%s" % (tab*level, line)) |
|
level += increase[n] |
|
return pretty |
|
|
|
|
|
def rcode(expr, assign_to=None, **settings): |
|
"""Converts an expr to a string of r code |
|
|
|
Parameters |
|
========== |
|
|
|
expr : Expr |
|
A SymPy expression to be converted. |
|
assign_to : optional |
|
When given, the argument is used as the name of the variable to which |
|
the expression is assigned. Can be a string, ``Symbol``, |
|
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of |
|
line-wrapping, or for expressions that generate multi-line statements. |
|
precision : integer, optional |
|
The precision for numbers such as pi [default=15]. |
|
user_functions : dict, optional |
|
A dictionary where the keys are string representations of either |
|
``FunctionClass`` or ``UndefinedFunction`` instances and the values |
|
are their desired R string representations. Alternatively, the |
|
dictionary value can be a list of tuples i.e. [(argument_test, |
|
rfunction_string)] or [(argument_test, rfunction_formater)]. See below |
|
for examples. |
|
human : bool, optional |
|
If True, the result is a single string that may contain some constant |
|
declarations for the number symbols. If False, the same information is |
|
returned in a tuple of (symbols_to_declare, not_supported_functions, |
|
code_text). [default=True]. |
|
contract: bool, optional |
|
If True, ``Indexed`` instances are assumed to obey tensor contraction |
|
rules and the corresponding nested loops over indices are generated. |
|
Setting contract=False will not generate loops, instead the user is |
|
responsible to provide values for the indices in the code. |
|
[default=True]. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import rcode, symbols, Rational, sin, ceiling, Abs, Function |
|
>>> x, tau = symbols("x, tau") |
|
>>> rcode((2*tau)**Rational(7, 2)) |
|
'8*sqrt(2)*tau^(7.0/2.0)' |
|
>>> rcode(sin(x), assign_to="s") |
|
's = sin(x);' |
|
|
|
Simple custom printing can be defined for certain types by passing a |
|
dictionary of {"type" : "function"} to the ``user_functions`` kwarg. |
|
Alternatively, the dictionary value can be a list of tuples i.e. |
|
[(argument_test, cfunction_string)]. |
|
|
|
>>> custom_functions = { |
|
... "ceiling": "CEIL", |
|
... "Abs": [(lambda x: not x.is_integer, "fabs"), |
|
... (lambda x: x.is_integer, "ABS")], |
|
... "func": "f" |
|
... } |
|
>>> func = Function('func') |
|
>>> rcode(func(Abs(x) + ceiling(x)), user_functions=custom_functions) |
|
'f(fabs(x) + CEIL(x))' |
|
|
|
or if the R-function takes a subset of the original arguments: |
|
|
|
>>> rcode(2**x + 3**x, user_functions={'Pow': [ |
|
... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e), |
|
... (lambda b, e: b != 2, 'pow')]}) |
|
'exp2(x) + pow(3, x)' |
|
|
|
``Piecewise`` expressions are converted into conditionals. If an |
|
``assign_to`` variable is provided an if statement is created, otherwise |
|
the ternary operator is used. Note that if the ``Piecewise`` lacks a |
|
default term, represented by ``(expr, True)`` then an error will be thrown. |
|
This is to prevent generating an expression that may not evaluate to |
|
anything. |
|
|
|
>>> from sympy import Piecewise |
|
>>> expr = Piecewise((x + 1, x > 0), (x, True)) |
|
>>> print(rcode(expr, assign_to=tau)) |
|
tau = ifelse(x > 0,x + 1,x); |
|
|
|
Support for loops is provided through ``Indexed`` types. With |
|
``contract=True`` these expressions will be turned into loops, whereas |
|
``contract=False`` will just print the assignment expression that should be |
|
looped over: |
|
|
|
>>> from sympy import Eq, IndexedBase, Idx |
|
>>> len_y = 5 |
|
>>> y = IndexedBase('y', shape=(len_y,)) |
|
>>> t = IndexedBase('t', shape=(len_y,)) |
|
>>> Dy = IndexedBase('Dy', shape=(len_y-1,)) |
|
>>> i = Idx('i', len_y-1) |
|
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) |
|
>>> rcode(e.rhs, assign_to=e.lhs, contract=False) |
|
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' |
|
|
|
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions |
|
must be provided to ``assign_to``. Note that any expression that can be |
|
generated normally can also exist inside a Matrix: |
|
|
|
>>> from sympy import Matrix, MatrixSymbol |
|
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) |
|
>>> A = MatrixSymbol('A', 3, 1) |
|
>>> print(rcode(mat, A)) |
|
A[0] = x^2; |
|
A[1] = ifelse(x > 0,x + 1,x); |
|
A[2] = sin(x); |
|
|
|
""" |
|
|
|
return RCodePrinter(settings).doprint(expr, assign_to) |
|
|
|
|
|
def print_rcode(expr, **settings): |
|
"""Prints R representation of the given expression.""" |
|
print(rcode(expr, **settings)) |
|
|