|
""" |
|
Python code printers |
|
|
|
This module contains Python code printers for plain Python as well as NumPy & SciPy enabled code. |
|
""" |
|
from collections import defaultdict |
|
from itertools import chain |
|
from sympy.core import S |
|
from sympy.core.mod import Mod |
|
from .precedence import precedence |
|
from .codeprinter import CodePrinter |
|
|
|
_kw = { |
|
'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', |
|
'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', |
|
'is', 'lambda', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', |
|
'with', 'yield', 'None', 'False', 'nonlocal', 'True' |
|
} |
|
|
|
_known_functions = { |
|
'Abs': 'abs', |
|
'Min': 'min', |
|
'Max': 'max', |
|
} |
|
_known_functions_math = { |
|
'acos': 'acos', |
|
'acosh': 'acosh', |
|
'asin': 'asin', |
|
'asinh': 'asinh', |
|
'atan': 'atan', |
|
'atan2': 'atan2', |
|
'atanh': 'atanh', |
|
'ceiling': 'ceil', |
|
'cos': 'cos', |
|
'cosh': 'cosh', |
|
'erf': 'erf', |
|
'erfc': 'erfc', |
|
'exp': 'exp', |
|
'expm1': 'expm1', |
|
'factorial': 'factorial', |
|
'floor': 'floor', |
|
'gamma': 'gamma', |
|
'hypot': 'hypot', |
|
'isinf': 'isinf', |
|
'isnan': 'isnan', |
|
'loggamma': 'lgamma', |
|
'log': 'log', |
|
'ln': 'log', |
|
'log10': 'log10', |
|
'log1p': 'log1p', |
|
'log2': 'log2', |
|
'sin': 'sin', |
|
'sinh': 'sinh', |
|
'Sqrt': 'sqrt', |
|
'tan': 'tan', |
|
'tanh': 'tanh' |
|
} |
|
|
|
_known_constants_math = { |
|
'Exp1': 'e', |
|
'Pi': 'pi', |
|
'E': 'e', |
|
'Infinity': 'inf', |
|
'NaN': 'nan', |
|
'ComplexInfinity': 'nan' |
|
} |
|
|
|
def _print_known_func(self, expr): |
|
known = self.known_functions[expr.__class__.__name__] |
|
return '{name}({args})'.format(name=self._module_format(known), |
|
args=', '.join((self._print(arg) for arg in expr.args))) |
|
|
|
|
|
def _print_known_const(self, expr): |
|
known = self.known_constants[expr.__class__.__name__] |
|
return self._module_format(known) |
|
|
|
|
|
class AbstractPythonCodePrinter(CodePrinter): |
|
printmethod = "_pythoncode" |
|
language = "Python" |
|
reserved_words = _kw |
|
modules = None |
|
tab = ' ' |
|
_kf = dict(chain( |
|
_known_functions.items(), |
|
[(k, 'math.' + v) for k, v in _known_functions_math.items()] |
|
)) |
|
_kc = {k: 'math.'+v for k, v in _known_constants_math.items()} |
|
_operators = {'and': 'and', 'or': 'or', 'not': 'not'} |
|
_default_settings = dict( |
|
CodePrinter._default_settings, |
|
user_functions={}, |
|
precision=17, |
|
inline=True, |
|
fully_qualified_modules=True, |
|
contract=False, |
|
standard='python3', |
|
) |
|
|
|
def __init__(self, settings=None): |
|
super().__init__(settings) |
|
|
|
|
|
std = self._settings['standard'] |
|
if std is None: |
|
import sys |
|
std = 'python{}'.format(sys.version_info.major) |
|
if std != 'python3': |
|
raise ValueError('Only Python 3 is supported.') |
|
self.standard = std |
|
|
|
self.module_imports = defaultdict(set) |
|
|
|
|
|
self.known_functions = dict(self._kf, **(settings or {}).get( |
|
'user_functions', {})) |
|
self.known_constants = dict(self._kc, **(settings or {}).get( |
|
'user_constants', {})) |
|
|
|
def _declare_number_const(self, name, value): |
|
return "%s = %s" % (name, value) |
|
|
|
def _module_format(self, fqn, register=True): |
|
parts = fqn.split('.') |
|
if register and len(parts) > 1: |
|
self.module_imports['.'.join(parts[:-1])].add(parts[-1]) |
|
|
|
if self._settings['fully_qualified_modules']: |
|
return fqn |
|
else: |
|
return fqn.split('(')[0].split('[')[0].split('.')[-1] |
|
|
|
def _format_code(self, lines): |
|
return lines |
|
|
|
def _get_statement(self, codestring): |
|
return "{}".format(codestring) |
|
|
|
def _get_comment(self, text): |
|
return " # {}".format(text) |
|
|
|
def _expand_fold_binary_op(self, op, args): |
|
""" |
|
This method expands a fold on binary operations. |
|
|
|
``functools.reduce`` is an example of a folded operation. |
|
|
|
For example, the expression |
|
|
|
`A + B + C + D` |
|
|
|
is folded into |
|
|
|
`((A + B) + C) + D` |
|
""" |
|
if len(args) == 1: |
|
return self._print(args[0]) |
|
else: |
|
return "%s(%s, %s)" % ( |
|
self._module_format(op), |
|
self._expand_fold_binary_op(op, args[:-1]), |
|
self._print(args[-1]), |
|
) |
|
|
|
def _expand_reduce_binary_op(self, op, args): |
|
""" |
|
This method expands a reduction on binary operations. |
|
|
|
Notice: this is NOT the same as ``functools.reduce``. |
|
|
|
For example, the expression |
|
|
|
`A + B + C + D` |
|
|
|
is reduced into: |
|
|
|
`(A + B) + (C + D)` |
|
""" |
|
if len(args) == 1: |
|
return self._print(args[0]) |
|
else: |
|
N = len(args) |
|
Nhalf = N // 2 |
|
return "%s(%s, %s)" % ( |
|
self._module_format(op), |
|
self._expand_reduce_binary_op(args[:Nhalf]), |
|
self._expand_reduce_binary_op(args[Nhalf:]), |
|
) |
|
|
|
def _print_NaN(self, expr): |
|
return "float('nan')" |
|
|
|
def _print_Infinity(self, expr): |
|
return "float('inf')" |
|
|
|
def _print_NegativeInfinity(self, expr): |
|
return "float('-inf')" |
|
|
|
def _print_ComplexInfinity(self, expr): |
|
return self._print_NaN(expr) |
|
|
|
def _print_Mod(self, expr): |
|
PREC = precedence(expr) |
|
return ('{} % {}'.format(*(self.parenthesize(x, PREC) for x in expr.args))) |
|
|
|
def _print_Piecewise(self, expr): |
|
result = [] |
|
i = 0 |
|
for arg in expr.args: |
|
e = arg.expr |
|
c = arg.cond |
|
if i == 0: |
|
result.append('(') |
|
result.append('(') |
|
result.append(self._print(e)) |
|
result.append(')') |
|
result.append(' if ') |
|
result.append(self._print(c)) |
|
result.append(' else ') |
|
i += 1 |
|
result = result[:-1] |
|
if result[-1] == 'True': |
|
result = result[:-2] |
|
result.append(')') |
|
else: |
|
result.append(' else None)') |
|
return ''.join(result) |
|
|
|
def _print_Relational(self, expr): |
|
"Relational printer for Equality and Unequality" |
|
op = { |
|
'==' :'equal', |
|
'!=' :'not_equal', |
|
'<' :'less', |
|
'<=' :'less_equal', |
|
'>' :'greater', |
|
'>=' :'greater_equal', |
|
} |
|
if expr.rel_op in op: |
|
lhs = self._print(expr.lhs) |
|
rhs = self._print(expr.rhs) |
|
return '({lhs} {op} {rhs})'.format(op=expr.rel_op, lhs=lhs, rhs=rhs) |
|
return super()._print_Relational(expr) |
|
|
|
def _print_ITE(self, expr): |
|
from sympy.functions.elementary.piecewise import Piecewise |
|
return self._print(expr.rewrite(Piecewise)) |
|
|
|
def _print_Sum(self, expr): |
|
loops = ( |
|
'for {i} in range({a}, {b}+1)'.format( |
|
i=self._print(i), |
|
a=self._print(a), |
|
b=self._print(b)) |
|
for i, a, b in expr.limits[::-1]) |
|
return '(builtins.sum({function} {loops}))'.format( |
|
function=self._print(expr.function), |
|
loops=' '.join(loops)) |
|
|
|
def _print_ImaginaryUnit(self, expr): |
|
return '1j' |
|
|
|
def _print_KroneckerDelta(self, expr): |
|
a, b = expr.args |
|
|
|
return '(1 if {a} == {b} else 0)'.format( |
|
a = self._print(a), |
|
b = self._print(b) |
|
) |
|
|
|
def _print_MatrixBase(self, expr): |
|
name = expr.__class__.__name__ |
|
func = self.known_functions.get(name, name) |
|
return "%s(%s)" % (func, self._print(expr.tolist())) |
|
|
|
_print_SparseRepMatrix = \ |
|
_print_MutableSparseMatrix = \ |
|
_print_ImmutableSparseMatrix = \ |
|
_print_Matrix = \ |
|
_print_DenseMatrix = \ |
|
_print_MutableDenseMatrix = \ |
|
_print_ImmutableMatrix = \ |
|
_print_ImmutableDenseMatrix = \ |
|
lambda self, expr: self._print_MatrixBase(expr) |
|
|
|
def _indent_codestring(self, codestring): |
|
return '\n'.join([self.tab + line for line in codestring.split('\n')]) |
|
|
|
def _print_FunctionDefinition(self, fd): |
|
body = '\n'.join((self._print(arg) for arg in fd.body)) |
|
return "def {name}({parameters}):\n{body}".format( |
|
name=self._print(fd.name), |
|
parameters=', '.join([self._print(var.symbol) for var in fd.parameters]), |
|
body=self._indent_codestring(body) |
|
) |
|
|
|
def _print_While(self, whl): |
|
body = '\n'.join((self._print(arg) for arg in whl.body)) |
|
return "while {cond}:\n{body}".format( |
|
cond=self._print(whl.condition), |
|
body=self._indent_codestring(body) |
|
) |
|
|
|
def _print_Declaration(self, decl): |
|
return '%s = %s' % ( |
|
self._print(decl.variable.symbol), |
|
self._print(decl.variable.value) |
|
) |
|
|
|
def _print_BreakToken(self, bt): |
|
return 'break' |
|
|
|
def _print_Return(self, ret): |
|
arg, = ret.args |
|
return 'return %s' % self._print(arg) |
|
|
|
def _print_Raise(self, rs): |
|
arg, = rs.args |
|
return 'raise %s' % self._print(arg) |
|
|
|
def _print_RuntimeError_(self, re): |
|
message, = re.args |
|
return "RuntimeError(%s)" % self._print(message) |
|
|
|
def _print_Print(self, prnt): |
|
print_args = ', '.join((self._print(arg) for arg in prnt.print_args)) |
|
from sympy.codegen.ast import none |
|
if prnt.format_string != none: |
|
print_args = '{} % ({}), end=""'.format( |
|
self._print(prnt.format_string), |
|
print_args |
|
) |
|
if prnt.file != None: |
|
print_args += ', file=%s' % self._print(prnt.file) |
|
return 'print(%s)' % print_args |
|
|
|
def _print_Stream(self, strm): |
|
if str(strm.name) == 'stdout': |
|
return self._module_format('sys.stdout') |
|
elif str(strm.name) == 'stderr': |
|
return self._module_format('sys.stderr') |
|
else: |
|
return self._print(strm.name) |
|
|
|
def _print_NoneToken(self, arg): |
|
return 'None' |
|
|
|
def _hprint_Pow(self, expr, rational=False, sqrt='math.sqrt'): |
|
"""Printing helper function for ``Pow`` |
|
|
|
Notes |
|
===== |
|
|
|
This preprocesses the ``sqrt`` as math formatter and prints division |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import sqrt |
|
>>> from sympy.printing.pycode import PythonCodePrinter |
|
>>> from sympy.abc import x |
|
|
|
Python code printer automatically looks up ``math.sqrt``. |
|
|
|
>>> printer = PythonCodePrinter() |
|
>>> printer._hprint_Pow(sqrt(x), rational=True) |
|
'x**(1/2)' |
|
>>> printer._hprint_Pow(sqrt(x), rational=False) |
|
'math.sqrt(x)' |
|
>>> printer._hprint_Pow(1/sqrt(x), rational=True) |
|
'x**(-1/2)' |
|
>>> printer._hprint_Pow(1/sqrt(x), rational=False) |
|
'1/math.sqrt(x)' |
|
>>> printer._hprint_Pow(1/x, rational=False) |
|
'1/x' |
|
>>> printer._hprint_Pow(1/x, rational=True) |
|
'x**(-1)' |
|
|
|
Using sqrt from numpy or mpmath |
|
|
|
>>> printer._hprint_Pow(sqrt(x), sqrt='numpy.sqrt') |
|
'numpy.sqrt(x)' |
|
>>> printer._hprint_Pow(sqrt(x), sqrt='mpmath.sqrt') |
|
'mpmath.sqrt(x)' |
|
|
|
See Also |
|
======== |
|
|
|
sympy.printing.str.StrPrinter._print_Pow |
|
""" |
|
PREC = precedence(expr) |
|
|
|
if expr.exp == S.Half and not rational: |
|
func = self._module_format(sqrt) |
|
arg = self._print(expr.base) |
|
return '{func}({arg})'.format(func=func, arg=arg) |
|
|
|
if expr.is_commutative and not rational: |
|
if -expr.exp is S.Half: |
|
func = self._module_format(sqrt) |
|
num = self._print(S.One) |
|
arg = self._print(expr.base) |
|
return f"{num}/{func}({arg})" |
|
if expr.exp is S.NegativeOne: |
|
num = self._print(S.One) |
|
arg = self.parenthesize(expr.base, PREC, strict=False) |
|
return f"{num}/{arg}" |
|
|
|
|
|
base_str = self.parenthesize(expr.base, PREC, strict=False) |
|
exp_str = self.parenthesize(expr.exp, PREC, strict=False) |
|
return "{}**{}".format(base_str, exp_str) |
|
|
|
|
|
class ArrayPrinter: |
|
|
|
def _arrayify(self, indexed): |
|
from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array |
|
try: |
|
return convert_indexed_to_array(indexed) |
|
except Exception: |
|
return indexed |
|
|
|
def _get_einsum_string(self, subranks, contraction_indices): |
|
letters = self._get_letter_generator_for_einsum() |
|
contraction_string = "" |
|
counter = 0 |
|
d = {j: min(i) for i in contraction_indices for j in i} |
|
indices = [] |
|
for rank_arg in subranks: |
|
lindices = [] |
|
for i in range(rank_arg): |
|
if counter in d: |
|
lindices.append(d[counter]) |
|
else: |
|
lindices.append(counter) |
|
counter += 1 |
|
indices.append(lindices) |
|
mapping = {} |
|
letters_free = [] |
|
letters_dum = [] |
|
for i in indices: |
|
for j in i: |
|
if j not in mapping: |
|
l = next(letters) |
|
mapping[j] = l |
|
else: |
|
l = mapping[j] |
|
contraction_string += l |
|
if j in d: |
|
if l not in letters_dum: |
|
letters_dum.append(l) |
|
else: |
|
letters_free.append(l) |
|
contraction_string += "," |
|
contraction_string = contraction_string[:-1] |
|
return contraction_string, letters_free, letters_dum |
|
|
|
def _get_letter_generator_for_einsum(self): |
|
for i in range(97, 123): |
|
yield chr(i) |
|
for i in range(65, 91): |
|
yield chr(i) |
|
raise ValueError("out of letters") |
|
|
|
def _print_ArrayTensorProduct(self, expr): |
|
letters = self._get_letter_generator_for_einsum() |
|
contraction_string = ",".join(["".join([next(letters) for j in range(i)]) for i in expr.subranks]) |
|
return '%s("%s", %s)' % ( |
|
self._module_format(self._module + "." + self._einsum), |
|
contraction_string, |
|
", ".join([self._print(arg) for arg in expr.args]) |
|
) |
|
|
|
def _print_ArrayContraction(self, expr): |
|
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct |
|
base = expr.expr |
|
contraction_indices = expr.contraction_indices |
|
|
|
if isinstance(base, ArrayTensorProduct): |
|
elems = ",".join(["%s" % (self._print(arg)) for arg in base.args]) |
|
ranks = base.subranks |
|
else: |
|
elems = self._print(base) |
|
ranks = [len(base.shape)] |
|
|
|
contraction_string, letters_free, letters_dum = self._get_einsum_string(ranks, contraction_indices) |
|
|
|
if not contraction_indices: |
|
return self._print(base) |
|
if isinstance(base, ArrayTensorProduct): |
|
elems = ",".join(["%s" % (self._print(arg)) for arg in base.args]) |
|
else: |
|
elems = self._print(base) |
|
return "%s(\"%s\", %s)" % ( |
|
self._module_format(self._module + "." + self._einsum), |
|
"{}->{}".format(contraction_string, "".join(sorted(letters_free))), |
|
elems, |
|
) |
|
|
|
def _print_ArrayDiagonal(self, expr): |
|
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct |
|
diagonal_indices = list(expr.diagonal_indices) |
|
if isinstance(expr.expr, ArrayTensorProduct): |
|
subranks = expr.expr.subranks |
|
elems = expr.expr.args |
|
else: |
|
subranks = expr.subranks |
|
elems = [expr.expr] |
|
diagonal_string, letters_free, letters_dum = self._get_einsum_string(subranks, diagonal_indices) |
|
elems = [self._print(i) for i in elems] |
|
return '%s("%s", %s)' % ( |
|
self._module_format(self._module + "." + self._einsum), |
|
"{}->{}".format(diagonal_string, "".join(letters_free+letters_dum)), |
|
", ".join(elems) |
|
) |
|
|
|
def _print_PermuteDims(self, expr): |
|
return "%s(%s, %s)" % ( |
|
self._module_format(self._module + "." + self._transpose), |
|
self._print(expr.expr), |
|
self._print(expr.permutation.array_form), |
|
) |
|
|
|
def _print_ArrayAdd(self, expr): |
|
return self._expand_fold_binary_op(self._module + "." + self._add, expr.args) |
|
|
|
def _print_OneArray(self, expr): |
|
return "%s((%s,))" % ( |
|
self._module_format(self._module+ "." + self._ones), |
|
','.join(map(self._print,expr.args)) |
|
) |
|
|
|
def _print_ZeroArray(self, expr): |
|
return "%s((%s,))" % ( |
|
self._module_format(self._module+ "." + self._zeros), |
|
','.join(map(self._print,expr.args)) |
|
) |
|
|
|
def _print_Assignment(self, expr): |
|
|
|
|
|
lhs = self._print(self._arrayify(expr.lhs)) |
|
rhs = self._print(self._arrayify(expr.rhs)) |
|
return "%s = %s" % ( lhs, rhs ) |
|
|
|
def _print_IndexedBase(self, expr): |
|
return self._print_ArraySymbol(expr) |
|
|
|
|
|
class PythonCodePrinter(AbstractPythonCodePrinter): |
|
|
|
def _print_sign(self, e): |
|
return '(0.0 if {e} == 0 else {f}(1, {e}))'.format( |
|
f=self._module_format('math.copysign'), e=self._print(e.args[0])) |
|
|
|
def _print_Not(self, expr): |
|
PREC = precedence(expr) |
|
return self._operators['not'] + ' ' + self.parenthesize(expr.args[0], PREC) |
|
|
|
def _print_IndexedBase(self, expr): |
|
return expr.name |
|
|
|
def _print_Indexed(self, expr): |
|
base = expr.args[0] |
|
index = expr.args[1:] |
|
return "{}[{}]".format(str(base), ", ".join([self._print(ind) for ind in index])) |
|
|
|
def _print_Pow(self, expr, rational=False): |
|
return self._hprint_Pow(expr, rational=rational) |
|
|
|
def _print_Rational(self, expr): |
|
return '{}/{}'.format(expr.p, expr.q) |
|
|
|
def _print_Half(self, expr): |
|
return self._print_Rational(expr) |
|
|
|
def _print_frac(self, expr): |
|
return self._print_Mod(Mod(expr.args[0], 1)) |
|
|
|
def _print_Symbol(self, expr): |
|
|
|
name = super()._print_Symbol(expr) |
|
|
|
if name in self.reserved_words: |
|
if self._settings['error_on_reserved']: |
|
msg = ('This expression includes the symbol "{}" which is a ' |
|
'reserved keyword in this language.') |
|
raise ValueError(msg.format(name)) |
|
return name + self._settings['reserved_word_suffix'] |
|
elif '{' in name: |
|
return name.replace('{', '').replace('}', '') |
|
else: |
|
return name |
|
|
|
_print_lowergamma = CodePrinter._print_not_supported |
|
_print_uppergamma = CodePrinter._print_not_supported |
|
_print_fresnelc = CodePrinter._print_not_supported |
|
_print_fresnels = CodePrinter._print_not_supported |
|
|
|
|
|
for k in PythonCodePrinter._kf: |
|
setattr(PythonCodePrinter, '_print_%s' % k, _print_known_func) |
|
|
|
for k in _known_constants_math: |
|
setattr(PythonCodePrinter, '_print_%s' % k, _print_known_const) |
|
|
|
|
|
def pycode(expr, **settings): |
|
""" Converts an expr to a string of Python code |
|
|
|
Parameters |
|
========== |
|
|
|
expr : Expr |
|
A SymPy expression. |
|
fully_qualified_modules : bool |
|
Whether or not to write out full module names of functions |
|
(``math.sin`` vs. ``sin``). default: ``True``. |
|
standard : str or None, optional |
|
Only 'python3' (default) is supported. |
|
This parameter may be removed in the future. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import pycode, tan, Symbol |
|
>>> pycode(tan(Symbol('x')) + 1) |
|
'math.tan(x) + 1' |
|
|
|
""" |
|
return PythonCodePrinter(settings).doprint(expr) |
|
|
|
|
|
from itertools import chain |
|
from sympy.printing.pycode import PythonCodePrinter |
|
|
|
_known_functions_cmath = { |
|
'exp': 'exp', |
|
'sqrt': 'sqrt', |
|
'log': 'log', |
|
'cos': 'cos', |
|
'sin': 'sin', |
|
'tan': 'tan', |
|
'acos': 'acos', |
|
'asin': 'asin', |
|
'atan': 'atan', |
|
'cosh': 'cosh', |
|
'sinh': 'sinh', |
|
'tanh': 'tanh', |
|
'acosh': 'acosh', |
|
'asinh': 'asinh', |
|
'atanh': 'atanh', |
|
} |
|
|
|
_known_constants_cmath = { |
|
'Pi': 'pi', |
|
'E': 'e', |
|
'Infinity': 'inf', |
|
'NegativeInfinity': '-inf', |
|
} |
|
|
|
class CmathPrinter(PythonCodePrinter): |
|
""" Printer for Python's cmath module """ |
|
printmethod = "_cmathcode" |
|
language = "Python with cmath" |
|
|
|
_kf = dict(chain( |
|
_known_functions_cmath.items() |
|
)) |
|
|
|
_kc = {k: 'cmath.' + v for k, v in _known_constants_cmath.items()} |
|
|
|
def _print_Pow(self, expr, rational=False): |
|
return self._hprint_Pow(expr, rational=rational, sqrt='cmath.sqrt') |
|
|
|
def _print_Float(self, e): |
|
return '{func}({val})'.format(func=self._module_format('cmath.mpf'), val=self._print(e)) |
|
|
|
def _print_known_func(self, expr): |
|
func_name = expr.func.__name__ |
|
if func_name in self._kf: |
|
return f"cmath.{self._kf[func_name]}({', '.join(map(self._print, expr.args))})" |
|
return super()._print_Function(expr) |
|
|
|
def _print_known_const(self, expr): |
|
return self._kc[expr.__class__.__name__] |
|
|
|
def _print_re(self, expr): |
|
"""Prints `re(z)` as `z.real`""" |
|
return f"({self._print(expr.args[0])}).real" |
|
|
|
def _print_im(self, expr): |
|
"""Prints `im(z)` as `z.imag`""" |
|
return f"({self._print(expr.args[0])}).imag" |
|
|
|
|
|
for k in CmathPrinter._kf: |
|
setattr(CmathPrinter, '_print_%s' % k, CmathPrinter._print_known_func) |
|
|
|
for k in _known_constants_cmath: |
|
setattr(CmathPrinter, '_print_%s' % k, CmathPrinter._print_known_const) |
|
|
|
|
|
_not_in_mpmath = 'log1p log2'.split() |
|
_in_mpmath = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_mpmath] |
|
_known_functions_mpmath = dict(_in_mpmath, **{ |
|
'beta': 'beta', |
|
'frac': 'frac', |
|
'fresnelc': 'fresnelc', |
|
'fresnels': 'fresnels', |
|
'sign': 'sign', |
|
'loggamma': 'loggamma', |
|
'hyper': 'hyper', |
|
'meijerg': 'meijerg', |
|
'besselj': 'besselj', |
|
'bessely': 'bessely', |
|
'besseli': 'besseli', |
|
'besselk': 'besselk', |
|
}) |
|
_known_constants_mpmath = { |
|
'Exp1': 'e', |
|
'Pi': 'pi', |
|
'GoldenRatio': 'phi', |
|
'EulerGamma': 'euler', |
|
'Catalan': 'catalan', |
|
'NaN': 'nan', |
|
'Infinity': 'inf', |
|
'NegativeInfinity': 'ninf' |
|
} |
|
|
|
|
|
def _unpack_integral_limits(integral_expr): |
|
""" helper function for _print_Integral that |
|
- accepts an Integral expression |
|
- returns a tuple of |
|
- a list variables of integration |
|
- a list of tuples of the upper and lower limits of integration |
|
""" |
|
integration_vars = [] |
|
limits = [] |
|
for integration_range in integral_expr.limits: |
|
if len(integration_range) == 3: |
|
integration_var, lower_limit, upper_limit = integration_range |
|
else: |
|
raise NotImplementedError("Only definite integrals are supported") |
|
integration_vars.append(integration_var) |
|
limits.append((lower_limit, upper_limit)) |
|
return integration_vars, limits |
|
|
|
|
|
class MpmathPrinter(PythonCodePrinter): |
|
""" |
|
Lambda printer for mpmath which maintains precision for floats |
|
""" |
|
printmethod = "_mpmathcode" |
|
|
|
language = "Python with mpmath" |
|
|
|
_kf = dict(chain( |
|
_known_functions.items(), |
|
[(k, 'mpmath.' + v) for k, v in _known_functions_mpmath.items()] |
|
)) |
|
_kc = {k: 'mpmath.'+v for k, v in _known_constants_mpmath.items()} |
|
|
|
def _print_Float(self, e): |
|
|
|
|
|
|
|
|
|
|
|
args = str(tuple(map(int, e._mpf_))) |
|
return '{func}({args})'.format(func=self._module_format('mpmath.mpf'), args=args) |
|
|
|
|
|
def _print_Rational(self, e): |
|
return "{func}({p})/{func}({q})".format( |
|
func=self._module_format('mpmath.mpf'), |
|
q=self._print(e.q), |
|
p=self._print(e.p) |
|
) |
|
|
|
def _print_Half(self, e): |
|
return self._print_Rational(e) |
|
|
|
def _print_uppergamma(self, e): |
|
return "{}({}, {}, {})".format( |
|
self._module_format('mpmath.gammainc'), |
|
self._print(e.args[0]), |
|
self._print(e.args[1]), |
|
self._module_format('mpmath.inf')) |
|
|
|
def _print_lowergamma(self, e): |
|
return "{}({}, 0, {})".format( |
|
self._module_format('mpmath.gammainc'), |
|
self._print(e.args[0]), |
|
self._print(e.args[1])) |
|
|
|
def _print_log2(self, e): |
|
return '{0}({1})/{0}(2)'.format( |
|
self._module_format('mpmath.log'), self._print(e.args[0])) |
|
|
|
def _print_log1p(self, e): |
|
return '{}({})'.format( |
|
self._module_format('mpmath.log1p'), self._print(e.args[0])) |
|
|
|
def _print_Pow(self, expr, rational=False): |
|
return self._hprint_Pow(expr, rational=rational, sqrt='mpmath.sqrt') |
|
|
|
def _print_Integral(self, e): |
|
integration_vars, limits = _unpack_integral_limits(e) |
|
|
|
return "{}(lambda {}: {}, {})".format( |
|
self._module_format("mpmath.quad"), |
|
", ".join(map(self._print, integration_vars)), |
|
self._print(e.args[0]), |
|
", ".join("(%s, %s)" % tuple(map(self._print, l)) for l in limits)) |
|
|
|
|
|
def _print_Derivative_zeta(self, args, seq_orders): |
|
arg, = args |
|
deriv_order, = seq_orders |
|
return '{}({}, derivative={})'.format( |
|
self._module_format('mpmath.zeta'), |
|
self._print(arg), deriv_order |
|
) |
|
|
|
|
|
for k in MpmathPrinter._kf: |
|
setattr(MpmathPrinter, '_print_%s' % k, _print_known_func) |
|
|
|
for k in _known_constants_mpmath: |
|
setattr(MpmathPrinter, '_print_%s' % k, _print_known_const) |
|
|
|
|
|
class SymPyPrinter(AbstractPythonCodePrinter): |
|
|
|
language = "Python with SymPy" |
|
|
|
_default_settings = dict( |
|
AbstractPythonCodePrinter._default_settings, |
|
strict=False |
|
) |
|
|
|
def _print_Function(self, expr): |
|
mod = expr.func.__module__ or '' |
|
return '%s(%s)' % (self._module_format(mod + ('.' if mod else '') + expr.func.__name__), |
|
', '.join((self._print(arg) for arg in expr.args))) |
|
|
|
def _print_Pow(self, expr, rational=False): |
|
return self._hprint_Pow(expr, rational=rational, sqrt='sympy.sqrt') |
|
|