|
""" |
|
Mathematica code printer |
|
""" |
|
|
|
from __future__ import annotations |
|
from typing import Any |
|
|
|
from sympy.core import Basic, Expr, Float |
|
from sympy.core.sorting import default_sort_key |
|
|
|
from sympy.printing.codeprinter import CodePrinter |
|
from sympy.printing.precedence import precedence |
|
|
|
|
|
known_functions = { |
|
"exp": [(lambda x: True, "Exp")], |
|
"log": [(lambda x: True, "Log")], |
|
"sin": [(lambda x: True, "Sin")], |
|
"cos": [(lambda x: True, "Cos")], |
|
"tan": [(lambda x: True, "Tan")], |
|
"cot": [(lambda x: True, "Cot")], |
|
"sec": [(lambda x: True, "Sec")], |
|
"csc": [(lambda x: True, "Csc")], |
|
"asin": [(lambda x: True, "ArcSin")], |
|
"acos": [(lambda x: True, "ArcCos")], |
|
"atan": [(lambda x: True, "ArcTan")], |
|
"acot": [(lambda x: True, "ArcCot")], |
|
"asec": [(lambda x: True, "ArcSec")], |
|
"acsc": [(lambda x: True, "ArcCsc")], |
|
"sinh": [(lambda x: True, "Sinh")], |
|
"cosh": [(lambda x: True, "Cosh")], |
|
"tanh": [(lambda x: True, "Tanh")], |
|
"coth": [(lambda x: True, "Coth")], |
|
"sech": [(lambda x: True, "Sech")], |
|
"csch": [(lambda x: True, "Csch")], |
|
"asinh": [(lambda x: True, "ArcSinh")], |
|
"acosh": [(lambda x: True, "ArcCosh")], |
|
"atanh": [(lambda x: True, "ArcTanh")], |
|
"acoth": [(lambda x: True, "ArcCoth")], |
|
"asech": [(lambda x: True, "ArcSech")], |
|
"acsch": [(lambda x: True, "ArcCsch")], |
|
"sinc": [(lambda x: True, "Sinc")], |
|
"conjugate": [(lambda x: True, "Conjugate")], |
|
"Max": [(lambda *x: True, "Max")], |
|
"Min": [(lambda *x: True, "Min")], |
|
"erf": [(lambda x: True, "Erf")], |
|
"erf2": [(lambda *x: True, "Erf")], |
|
"erfc": [(lambda x: True, "Erfc")], |
|
"erfi": [(lambda x: True, "Erfi")], |
|
"erfinv": [(lambda x: True, "InverseErf")], |
|
"erfcinv": [(lambda x: True, "InverseErfc")], |
|
"erf2inv": [(lambda *x: True, "InverseErf")], |
|
"expint": [(lambda *x: True, "ExpIntegralE")], |
|
"Ei": [(lambda x: True, "ExpIntegralEi")], |
|
"fresnelc": [(lambda x: True, "FresnelC")], |
|
"fresnels": [(lambda x: True, "FresnelS")], |
|
"gamma": [(lambda x: True, "Gamma")], |
|
"uppergamma": [(lambda *x: True, "Gamma")], |
|
"polygamma": [(lambda *x: True, "PolyGamma")], |
|
"loggamma": [(lambda x: True, "LogGamma")], |
|
"beta": [(lambda *x: True, "Beta")], |
|
"Ci": [(lambda x: True, "CosIntegral")], |
|
"Si": [(lambda x: True, "SinIntegral")], |
|
"Chi": [(lambda x: True, "CoshIntegral")], |
|
"Shi": [(lambda x: True, "SinhIntegral")], |
|
"li": [(lambda x: True, "LogIntegral")], |
|
"factorial": [(lambda x: True, "Factorial")], |
|
"factorial2": [(lambda x: True, "Factorial2")], |
|
"subfactorial": [(lambda x: True, "Subfactorial")], |
|
"catalan": [(lambda x: True, "CatalanNumber")], |
|
"harmonic": [(lambda *x: True, "HarmonicNumber")], |
|
"lucas": [(lambda x: True, "LucasL")], |
|
"RisingFactorial": [(lambda *x: True, "Pochhammer")], |
|
"FallingFactorial": [(lambda *x: True, "FactorialPower")], |
|
"laguerre": [(lambda *x: True, "LaguerreL")], |
|
"assoc_laguerre": [(lambda *x: True, "LaguerreL")], |
|
"hermite": [(lambda *x: True, "HermiteH")], |
|
"jacobi": [(lambda *x: True, "JacobiP")], |
|
"gegenbauer": [(lambda *x: True, "GegenbauerC")], |
|
"chebyshevt": [(lambda *x: True, "ChebyshevT")], |
|
"chebyshevu": [(lambda *x: True, "ChebyshevU")], |
|
"legendre": [(lambda *x: True, "LegendreP")], |
|
"assoc_legendre": [(lambda *x: True, "LegendreP")], |
|
"mathieuc": [(lambda *x: True, "MathieuC")], |
|
"mathieus": [(lambda *x: True, "MathieuS")], |
|
"mathieucprime": [(lambda *x: True, "MathieuCPrime")], |
|
"mathieusprime": [(lambda *x: True, "MathieuSPrime")], |
|
"stieltjes": [(lambda x: True, "StieltjesGamma")], |
|
"elliptic_e": [(lambda *x: True, "EllipticE")], |
|
"elliptic_f": [(lambda *x: True, "EllipticE")], |
|
"elliptic_k": [(lambda x: True, "EllipticK")], |
|
"elliptic_pi": [(lambda *x: True, "EllipticPi")], |
|
"zeta": [(lambda *x: True, "Zeta")], |
|
"dirichlet_eta": [(lambda x: True, "DirichletEta")], |
|
"riemann_xi": [(lambda x: True, "RiemannXi")], |
|
"besseli": [(lambda *x: True, "BesselI")], |
|
"besselj": [(lambda *x: True, "BesselJ")], |
|
"besselk": [(lambda *x: True, "BesselK")], |
|
"bessely": [(lambda *x: True, "BesselY")], |
|
"hankel1": [(lambda *x: True, "HankelH1")], |
|
"hankel2": [(lambda *x: True, "HankelH2")], |
|
"airyai": [(lambda x: True, "AiryAi")], |
|
"airybi": [(lambda x: True, "AiryBi")], |
|
"airyaiprime": [(lambda x: True, "AiryAiPrime")], |
|
"airybiprime": [(lambda x: True, "AiryBiPrime")], |
|
"polylog": [(lambda *x: True, "PolyLog")], |
|
"lerchphi": [(lambda *x: True, "LerchPhi")], |
|
"gcd": [(lambda *x: True, "GCD")], |
|
"lcm": [(lambda *x: True, "LCM")], |
|
"jn": [(lambda *x: True, "SphericalBesselJ")], |
|
"yn": [(lambda *x: True, "SphericalBesselY")], |
|
"hyper": [(lambda *x: True, "HypergeometricPFQ")], |
|
"meijerg": [(lambda *x: True, "MeijerG")], |
|
"appellf1": [(lambda *x: True, "AppellF1")], |
|
"DiracDelta": [(lambda x: True, "DiracDelta")], |
|
"Heaviside": [(lambda x: True, "HeavisideTheta")], |
|
"KroneckerDelta": [(lambda *x: True, "KroneckerDelta")], |
|
"sqrt": [(lambda x: True, "Sqrt")], |
|
} |
|
|
|
|
|
class MCodePrinter(CodePrinter): |
|
"""A printer to convert Python expressions to |
|
strings of the Wolfram's Mathematica code |
|
""" |
|
printmethod = "_mcode" |
|
language = "Wolfram Language" |
|
|
|
_default_settings: dict[str, Any] = dict(CodePrinter._default_settings, **{ |
|
'precision': 15, |
|
'user_functions': {}, |
|
}) |
|
|
|
_number_symbols: set[tuple[Expr, Float]] = set() |
|
_not_supported: set[Basic] = set() |
|
|
|
def __init__(self, settings={}): |
|
"""Register function mappings supplied by user""" |
|
CodePrinter.__init__(self, settings) |
|
self.known_functions = dict(known_functions) |
|
userfuncs = settings.get('user_functions', {}).copy() |
|
for k, v in userfuncs.items(): |
|
if not isinstance(v, list): |
|
userfuncs[k] = [(lambda *x: True, v)] |
|
self.known_functions.update(userfuncs) |
|
|
|
def _format_code(self, lines): |
|
return lines |
|
|
|
def _print_Pow(self, expr): |
|
PREC = precedence(expr) |
|
return '%s^%s' % (self.parenthesize(expr.base, PREC), |
|
self.parenthesize(expr.exp, PREC)) |
|
|
|
def _print_Mul(self, expr): |
|
PREC = precedence(expr) |
|
c, nc = expr.args_cnc() |
|
res = super()._print_Mul(expr.func(*c)) |
|
if nc: |
|
res += '*' |
|
res += '**'.join(self.parenthesize(a, PREC) for a in nc) |
|
return res |
|
|
|
def _print_Relational(self, expr): |
|
lhs_code = self._print(expr.lhs) |
|
rhs_code = self._print(expr.rhs) |
|
op = expr.rel_op |
|
return "{} {} {}".format(lhs_code, op, rhs_code) |
|
|
|
|
|
def _print_Zero(self, expr): |
|
return '0' |
|
|
|
def _print_One(self, expr): |
|
return '1' |
|
|
|
def _print_NegativeOne(self, expr): |
|
return '-1' |
|
|
|
def _print_Half(self, expr): |
|
return '1/2' |
|
|
|
def _print_ImaginaryUnit(self, expr): |
|
return 'I' |
|
|
|
|
|
|
|
def _print_Infinity(self, expr): |
|
return 'Infinity' |
|
|
|
def _print_NegativeInfinity(self, expr): |
|
return '-Infinity' |
|
|
|
def _print_ComplexInfinity(self, expr): |
|
return 'ComplexInfinity' |
|
|
|
def _print_NaN(self, expr): |
|
return 'Indeterminate' |
|
|
|
|
|
|
|
def _print_Exp1(self, expr): |
|
return 'E' |
|
|
|
def _print_Pi(self, expr): |
|
return 'Pi' |
|
|
|
def _print_GoldenRatio(self, expr): |
|
return 'GoldenRatio' |
|
|
|
def _print_TribonacciConstant(self, expr): |
|
expanded = expr.expand(func=True) |
|
PREC = precedence(expr) |
|
return self.parenthesize(expanded, PREC) |
|
|
|
def _print_EulerGamma(self, expr): |
|
return 'EulerGamma' |
|
|
|
def _print_Catalan(self, expr): |
|
return 'Catalan' |
|
|
|
|
|
def _print_list(self, expr): |
|
return '{' + ', '.join(self.doprint(a) for a in expr) + '}' |
|
_print_tuple = _print_list |
|
_print_Tuple = _print_list |
|
|
|
def _print_ImmutableDenseMatrix(self, expr): |
|
return self.doprint(expr.tolist()) |
|
|
|
def _print_ImmutableSparseMatrix(self, expr): |
|
|
|
def print_rule(pos, val): |
|
return '{} -> {}'.format( |
|
self.doprint((pos[0]+1, pos[1]+1)), self.doprint(val)) |
|
|
|
def print_data(): |
|
items = sorted(expr.todok().items(), key=default_sort_key) |
|
return '{' + \ |
|
', '.join(print_rule(k, v) for k, v in items) + \ |
|
'}' |
|
|
|
def print_dims(): |
|
return self.doprint(expr.shape) |
|
|
|
return 'SparseArray[{}, {}]'.format(print_data(), print_dims()) |
|
|
|
def _print_ImmutableDenseNDimArray(self, expr): |
|
return self.doprint(expr.tolist()) |
|
|
|
def _print_ImmutableSparseNDimArray(self, expr): |
|
def print_string_list(string_list): |
|
return '{' + ', '.join(a for a in string_list) + '}' |
|
|
|
def to_mathematica_index(*args): |
|
"""Helper function to change Python style indexing to |
|
Pathematica indexing. |
|
|
|
Python indexing (0, 1 ... n-1) |
|
-> Mathematica indexing (1, 2 ... n) |
|
""" |
|
return tuple(i + 1 for i in args) |
|
|
|
def print_rule(pos, val): |
|
"""Helper function to print a rule of Mathematica""" |
|
return '{} -> {}'.format(self.doprint(pos), self.doprint(val)) |
|
|
|
def print_data(): |
|
"""Helper function to print data part of Mathematica |
|
sparse array. |
|
|
|
It uses the fourth notation ``SparseArray[data,{d1,d2,...}]`` |
|
from |
|
https://reference.wolfram.com/language/ref/SparseArray.html |
|
|
|
``data`` must be formatted with rule. |
|
""" |
|
return print_string_list( |
|
[print_rule( |
|
to_mathematica_index(*(expr._get_tuple_index(key))), |
|
value) |
|
for key, value in sorted(expr._sparse_array.items())] |
|
) |
|
|
|
def print_dims(): |
|
"""Helper function to print dimensions part of Mathematica |
|
sparse array. |
|
|
|
It uses the fourth notation ``SparseArray[data,{d1,d2,...}]`` |
|
from |
|
https://reference.wolfram.com/language/ref/SparseArray.html |
|
""" |
|
return self.doprint(expr.shape) |
|
|
|
return 'SparseArray[{}, {}]'.format(print_data(), print_dims()) |
|
|
|
def _print_Function(self, expr): |
|
if expr.func.__name__ in self.known_functions: |
|
cond_mfunc = self.known_functions[expr.func.__name__] |
|
for cond, mfunc in cond_mfunc: |
|
if cond(*expr.args): |
|
return "%s[%s]" % (mfunc, self.stringify(expr.args, ", ")) |
|
elif expr.func.__name__ in self._rewriteable_functions: |
|
|
|
target_f, required_fs = self._rewriteable_functions[expr.func.__name__] |
|
if self._can_print(target_f) and all(self._can_print(f) for f in required_fs): |
|
return self._print(expr.rewrite(target_f)) |
|
return expr.func.__name__ + "[%s]" % self.stringify(expr.args, ", ") |
|
|
|
_print_MinMaxBase = _print_Function |
|
|
|
def _print_LambertW(self, expr): |
|
if len(expr.args) == 1: |
|
return "ProductLog[{}]".format(self._print(expr.args[0])) |
|
return "ProductLog[{}, {}]".format( |
|
self._print(expr.args[1]), self._print(expr.args[0])) |
|
|
|
def _print_atan2(self, expr): |
|
return "ArcTan[{}, {}]".format( |
|
self._print(expr.args[1]), self._print(expr.args[0])) |
|
|
|
def _print_Integral(self, expr): |
|
if len(expr.variables) == 1 and not expr.limits[0][1:]: |
|
args = [expr.args[0], expr.variables[0]] |
|
else: |
|
args = expr.args |
|
return "Hold[Integrate[" + ', '.join(self.doprint(a) for a in args) + "]]" |
|
|
|
def _print_Sum(self, expr): |
|
return "Hold[Sum[" + ', '.join(self.doprint(a) for a in expr.args) + "]]" |
|
|
|
def _print_Derivative(self, expr): |
|
dexpr = expr.expr |
|
dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count] |
|
return "Hold[D[" + ', '.join(self.doprint(a) for a in [dexpr] + dvars) + "]]" |
|
|
|
|
|
def _get_comment(self, text): |
|
return "(* {} *)".format(text) |
|
|
|
|
|
def mathematica_code(expr, **settings): |
|
r"""Converts an expr to a string of the Wolfram Mathematica code |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import mathematica_code as mcode, symbols, sin |
|
>>> x = symbols('x') |
|
>>> mcode(sin(x).series(x).removeO()) |
|
'(1/120)*x^5 - 1/6*x^3 + x' |
|
""" |
|
return MCodePrinter(settings).doprint(expr) |
|
|