|
""" |
|
Javascript code printer |
|
|
|
The JavascriptCodePrinter converts single SymPy expressions into single |
|
Javascript expressions, using the functions defined in the Javascript |
|
Math object where possible. |
|
|
|
""" |
|
|
|
from __future__ import annotations |
|
from typing import Any |
|
|
|
from sympy.core import S |
|
from sympy.core.numbers import equal_valued |
|
from sympy.printing.codeprinter import CodePrinter |
|
from sympy.printing.precedence import precedence, PRECEDENCE |
|
|
|
|
|
|
|
|
|
known_functions = { |
|
'Abs': 'Math.abs', |
|
'acos': 'Math.acos', |
|
'acosh': 'Math.acosh', |
|
'asin': 'Math.asin', |
|
'asinh': 'Math.asinh', |
|
'atan': 'Math.atan', |
|
'atan2': 'Math.atan2', |
|
'atanh': 'Math.atanh', |
|
'ceiling': 'Math.ceil', |
|
'cos': 'Math.cos', |
|
'cosh': 'Math.cosh', |
|
'exp': 'Math.exp', |
|
'floor': 'Math.floor', |
|
'log': 'Math.log', |
|
'Max': 'Math.max', |
|
'Min': 'Math.min', |
|
'sign': 'Math.sign', |
|
'sin': 'Math.sin', |
|
'sinh': 'Math.sinh', |
|
'tan': 'Math.tan', |
|
'tanh': 'Math.tanh', |
|
} |
|
|
|
|
|
class JavascriptCodePrinter(CodePrinter): |
|
""""A Printer to convert Python expressions to strings of JavaScript code |
|
""" |
|
printmethod = '_javascript' |
|
language = 'JavaScript' |
|
|
|
_default_settings: dict[str, Any] = dict(CodePrinter._default_settings, **{ |
|
'precision': 17, |
|
'user_functions': {}, |
|
'contract': True, |
|
}) |
|
|
|
def __init__(self, settings={}): |
|
CodePrinter.__init__(self, settings) |
|
self.known_functions = dict(known_functions) |
|
userfuncs = settings.get('user_functions', {}) |
|
self.known_functions.update(userfuncs) |
|
|
|
def _rate_index_position(self, p): |
|
return p*5 |
|
|
|
def _get_statement(self, codestring): |
|
return "%s;" % codestring |
|
|
|
def _get_comment(self, text): |
|
return "// {}".format(text) |
|
|
|
def _declare_number_const(self, name, value): |
|
return "var {} = {};".format(name, value.evalf(self._settings['precision'])) |
|
|
|
def _format_code(self, lines): |
|
return self.indent_code(lines) |
|
|
|
def _traverse_matrix_indices(self, mat): |
|
rows, cols = mat.shape |
|
return ((i, j) for i in range(rows) for j in range(cols)) |
|
|
|
def _get_loop_opening_ending(self, indices): |
|
open_lines = [] |
|
close_lines = [] |
|
loopstart = "for (var %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){" |
|
for i in indices: |
|
|
|
open_lines.append(loopstart % { |
|
'varble': self._print(i.label), |
|
'start': self._print(i.lower), |
|
'end': self._print(i.upper + 1)}) |
|
close_lines.append("}") |
|
return open_lines, close_lines |
|
|
|
def _print_Pow(self, expr): |
|
PREC = precedence(expr) |
|
if equal_valued(expr.exp, -1): |
|
return '1/%s' % (self.parenthesize(expr.base, PREC)) |
|
elif equal_valued(expr.exp, 0.5): |
|
return 'Math.sqrt(%s)' % self._print(expr.base) |
|
elif expr.exp == S.One/3: |
|
return 'Math.cbrt(%s)' % self._print(expr.base) |
|
else: |
|
return 'Math.pow(%s, %s)' % (self._print(expr.base), |
|
self._print(expr.exp)) |
|
|
|
def _print_Rational(self, expr): |
|
p, q = int(expr.p), int(expr.q) |
|
return '%d/%d' % (p, q) |
|
|
|
def _print_Mod(self, expr): |
|
num, den = expr.args |
|
PREC = precedence(expr) |
|
snum, sden = [self.parenthesize(arg, PREC) for arg in expr.args] |
|
|
|
|
|
|
|
if (num.is_nonnegative and den.is_nonnegative or |
|
num.is_nonpositive and den.is_nonpositive): |
|
return f"{snum} % {sden}" |
|
return f"(({snum} % {sden}) + {sden}) % {sden}" |
|
|
|
def _print_Relational(self, expr): |
|
lhs_code = self._print(expr.lhs) |
|
rhs_code = self._print(expr.rhs) |
|
op = expr.rel_op |
|
return "{} {} {}".format(lhs_code, op, rhs_code) |
|
|
|
def _print_Indexed(self, expr): |
|
|
|
dims = expr.shape |
|
elem = S.Zero |
|
offset = S.One |
|
for i in reversed(range(expr.rank)): |
|
elem += expr.indices[i]*offset |
|
offset *= dims[i] |
|
return "%s[%s]" % (self._print(expr.base.label), self._print(elem)) |
|
|
|
def _print_Exp1(self, expr): |
|
return "Math.E" |
|
|
|
def _print_Pi(self, expr): |
|
return 'Math.PI' |
|
|
|
def _print_Infinity(self, expr): |
|
return 'Number.POSITIVE_INFINITY' |
|
|
|
def _print_NegativeInfinity(self, expr): |
|
return 'Number.NEGATIVE_INFINITY' |
|
|
|
def _print_Piecewise(self, expr): |
|
from sympy.codegen.ast import Assignment |
|
if expr.args[-1].cond != True: |
|
|
|
|
|
raise ValueError("All Piecewise expressions must contain an " |
|
"(expr, True) statement to be used as a default " |
|
"condition. Without one, the generated " |
|
"expression may not evaluate to anything under " |
|
"some condition.") |
|
lines = [] |
|
if expr.has(Assignment): |
|
for i, (e, c) in enumerate(expr.args): |
|
if i == 0: |
|
lines.append("if (%s) {" % self._print(c)) |
|
elif i == len(expr.args) - 1 and c == True: |
|
lines.append("else {") |
|
else: |
|
lines.append("else if (%s) {" % self._print(c)) |
|
code0 = self._print(e) |
|
lines.append(code0) |
|
lines.append("}") |
|
return "\n".join(lines) |
|
else: |
|
|
|
|
|
|
|
|
|
ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e)) |
|
for e, c in expr.args[:-1]] |
|
last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr) |
|
return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)]) |
|
|
|
def _print_MatrixElement(self, expr): |
|
return "{}[{}]".format(self.parenthesize(expr.parent, |
|
PRECEDENCE["Atom"], strict=True), |
|
expr.j + expr.i*expr.parent.shape[1]) |
|
|
|
def indent_code(self, code): |
|
"""Accepts a string of code or a list of code lines""" |
|
|
|
if isinstance(code, str): |
|
code_lines = self.indent_code(code.splitlines(True)) |
|
return ''.join(code_lines) |
|
|
|
tab = " " |
|
inc_token = ('{', '(', '{\n', '(\n') |
|
dec_token = ('}', ')') |
|
|
|
code = [ line.lstrip(' \t') for line in code ] |
|
|
|
increase = [ int(any(map(line.endswith, inc_token))) for line in code ] |
|
decrease = [ int(any(map(line.startswith, dec_token))) |
|
for line in code ] |
|
|
|
pretty = [] |
|
level = 0 |
|
for n, line in enumerate(code): |
|
if line in ('', '\n'): |
|
pretty.append(line) |
|
continue |
|
level -= decrease[n] |
|
pretty.append("%s%s" % (tab*level, line)) |
|
level += increase[n] |
|
return pretty |
|
|
|
|
|
def jscode(expr, assign_to=None, **settings): |
|
"""Converts an expr to a string of javascript code |
|
|
|
Parameters |
|
========== |
|
|
|
expr : Expr |
|
A SymPy expression to be converted. |
|
assign_to : optional |
|
When given, the argument is used as the name of the variable to which |
|
the expression is assigned. Can be a string, ``Symbol``, |
|
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of |
|
line-wrapping, or for expressions that generate multi-line statements. |
|
precision : integer, optional |
|
The precision for numbers such as pi [default=15]. |
|
user_functions : dict, optional |
|
A dictionary where keys are ``FunctionClass`` instances and values are |
|
their string representations. Alternatively, the dictionary value can |
|
be a list of tuples i.e. [(argument_test, js_function_string)]. See |
|
below for examples. |
|
human : bool, optional |
|
If True, the result is a single string that may contain some constant |
|
declarations for the number symbols. If False, the same information is |
|
returned in a tuple of (symbols_to_declare, not_supported_functions, |
|
code_text). [default=True]. |
|
contract: bool, optional |
|
If True, ``Indexed`` instances are assumed to obey tensor contraction |
|
rules and the corresponding nested loops over indices are generated. |
|
Setting contract=False will not generate loops, instead the user is |
|
responsible to provide values for the indices in the code. |
|
[default=True]. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import jscode, symbols, Rational, sin, ceiling, Abs |
|
>>> x, tau = symbols("x, tau") |
|
>>> jscode((2*tau)**Rational(7, 2)) |
|
'8*Math.sqrt(2)*Math.pow(tau, 7/2)' |
|
>>> jscode(sin(x), assign_to="s") |
|
's = Math.sin(x);' |
|
|
|
Custom printing can be defined for certain types by passing a dictionary of |
|
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the |
|
dictionary value can be a list of tuples i.e. [(argument_test, |
|
js_function_string)]. |
|
|
|
>>> custom_functions = { |
|
... "ceiling": "CEIL", |
|
... "Abs": [(lambda x: not x.is_integer, "fabs"), |
|
... (lambda x: x.is_integer, "ABS")] |
|
... } |
|
>>> jscode(Abs(x) + ceiling(x), user_functions=custom_functions) |
|
'fabs(x) + CEIL(x)' |
|
|
|
``Piecewise`` expressions are converted into conditionals. If an |
|
``assign_to`` variable is provided an if statement is created, otherwise |
|
the ternary operator is used. Note that if the ``Piecewise`` lacks a |
|
default term, represented by ``(expr, True)`` then an error will be thrown. |
|
This is to prevent generating an expression that may not evaluate to |
|
anything. |
|
|
|
>>> from sympy import Piecewise |
|
>>> expr = Piecewise((x + 1, x > 0), (x, True)) |
|
>>> print(jscode(expr, tau)) |
|
if (x > 0) { |
|
tau = x + 1; |
|
} |
|
else { |
|
tau = x; |
|
} |
|
|
|
Support for loops is provided through ``Indexed`` types. With |
|
``contract=True`` these expressions will be turned into loops, whereas |
|
``contract=False`` will just print the assignment expression that should be |
|
looped over: |
|
|
|
>>> from sympy import Eq, IndexedBase, Idx |
|
>>> len_y = 5 |
|
>>> y = IndexedBase('y', shape=(len_y,)) |
|
>>> t = IndexedBase('t', shape=(len_y,)) |
|
>>> Dy = IndexedBase('Dy', shape=(len_y-1,)) |
|
>>> i = Idx('i', len_y-1) |
|
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) |
|
>>> jscode(e.rhs, assign_to=e.lhs, contract=False) |
|
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' |
|
|
|
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions |
|
must be provided to ``assign_to``. Note that any expression that can be |
|
generated normally can also exist inside a Matrix: |
|
|
|
>>> from sympy import Matrix, MatrixSymbol |
|
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) |
|
>>> A = MatrixSymbol('A', 3, 1) |
|
>>> print(jscode(mat, A)) |
|
A[0] = Math.pow(x, 2); |
|
if (x > 0) { |
|
A[1] = x + 1; |
|
} |
|
else { |
|
A[1] = x; |
|
} |
|
A[2] = Math.sin(x); |
|
""" |
|
|
|
return JavascriptCodePrinter(settings).doprint(expr, assign_to) |
|
|
|
|
|
def print_jscode(expr, **settings): |
|
"""Prints the Javascript representation of the given expression. |
|
|
|
See jscode for the meaning of the optional arguments. |
|
""" |
|
print(jscode(expr, **settings)) |
|
|