|
from __future__ import annotations |
|
import math |
|
from typing import Any |
|
|
|
from sympy.external import import_module |
|
from sympy.printing.printer import Printer |
|
from sympy.utilities.exceptions import sympy_deprecation_warning |
|
from sympy.utilities.iterables import is_sequence |
|
import sympy |
|
from functools import partial |
|
|
|
|
|
aesara = import_module('aesara') |
|
|
|
if aesara: |
|
aes = aesara.scalar |
|
aet = aesara.tensor |
|
from aesara.tensor import nlinalg |
|
from aesara.tensor.elemwise import Elemwise |
|
from aesara.tensor.elemwise import DimShuffle |
|
|
|
|
|
|
|
|
|
true_divide = getattr(aet, 'true_divide', None) |
|
if true_divide is None: |
|
true_divide = aet.true_div |
|
|
|
mapping = { |
|
sympy.Add: aet.add, |
|
sympy.Mul: aet.mul, |
|
sympy.Abs: aet.abs, |
|
sympy.sign: aet.sgn, |
|
sympy.ceiling: aet.ceil, |
|
sympy.floor: aet.floor, |
|
sympy.log: aet.log, |
|
sympy.exp: aet.exp, |
|
sympy.sqrt: aet.sqrt, |
|
sympy.cos: aet.cos, |
|
sympy.acos: aet.arccos, |
|
sympy.sin: aet.sin, |
|
sympy.asin: aet.arcsin, |
|
sympy.tan: aet.tan, |
|
sympy.atan: aet.arctan, |
|
sympy.atan2: aet.arctan2, |
|
sympy.cosh: aet.cosh, |
|
sympy.acosh: aet.arccosh, |
|
sympy.sinh: aet.sinh, |
|
sympy.asinh: aet.arcsinh, |
|
sympy.tanh: aet.tanh, |
|
sympy.atanh: aet.arctanh, |
|
sympy.re: aet.real, |
|
sympy.im: aet.imag, |
|
sympy.arg: aet.angle, |
|
sympy.erf: aet.erf, |
|
sympy.gamma: aet.gamma, |
|
sympy.loggamma: aet.gammaln, |
|
sympy.Pow: aet.pow, |
|
sympy.Eq: aet.eq, |
|
sympy.StrictGreaterThan: aet.gt, |
|
sympy.StrictLessThan: aet.lt, |
|
sympy.LessThan: aet.le, |
|
sympy.GreaterThan: aet.ge, |
|
sympy.And: aet.bitwise_and, |
|
sympy.Or: aet.bitwise_or, |
|
sympy.Not: aet.invert, |
|
sympy.Xor: aet.bitwise_xor, |
|
sympy.Max: aet.maximum, |
|
sympy.Min: aet.minimum, |
|
sympy.conjugate: aet.conj, |
|
sympy.core.numbers.ImaginaryUnit: lambda:aet.complex(0,1), |
|
|
|
sympy.MatAdd: Elemwise(aes.add), |
|
sympy.HadamardProduct: Elemwise(aes.mul), |
|
sympy.Trace: nlinalg.trace, |
|
sympy.Determinant : nlinalg.det, |
|
sympy.Inverse: nlinalg.matrix_inverse, |
|
sympy.Transpose: DimShuffle((False, False), [1, 0]), |
|
} |
|
|
|
|
|
class AesaraPrinter(Printer): |
|
""" |
|
.. deprecated:: 1.14. |
|
The ``Aesara Code printing`` is deprecated.See its documentation for |
|
more information. See :ref:`deprecated-aesaraprinter` for details. |
|
|
|
Code printer which creates Aesara symbolic expression graphs. |
|
|
|
Parameters |
|
========== |
|
|
|
cache : dict |
|
Cache dictionary to use. If None (default) will use |
|
the global cache. To create a printer which does not depend on or alter |
|
global state pass an empty dictionary. Note: the dictionary is not |
|
copied on initialization of the printer and will be updated in-place, |
|
so using the same dict object when creating multiple printers or making |
|
multiple calls to :func:`.aesara_code` or :func:`.aesara_function` means |
|
the cache is shared between all these applications. |
|
|
|
Attributes |
|
========== |
|
|
|
cache : dict |
|
A cache of Aesara variables which have been created for SymPy |
|
symbol-like objects (e.g. :class:`sympy.core.symbol.Symbol` or |
|
:class:`sympy.matrices.expressions.MatrixSymbol`). This is used to |
|
ensure that all references to a given symbol in an expression (or |
|
multiple expressions) are printed as the same Aesara variable, which is |
|
created only once. Symbols are differentiated only by name and type. The |
|
format of the cache's contents should be considered opaque to the user. |
|
""" |
|
printmethod = "_aesara" |
|
|
|
def __init__(self, *args, **kwargs): |
|
self.cache = kwargs.pop('cache', {}) |
|
super().__init__(*args, **kwargs) |
|
|
|
def _get_key(self, s, name=None, dtype=None, broadcastable=None): |
|
""" Get the cache key for a SymPy object. |
|
|
|
Parameters |
|
========== |
|
|
|
s : sympy.core.basic.Basic |
|
SymPy object to get key for. |
|
|
|
name : str |
|
Name of object, if it does not have a ``name`` attribute. |
|
""" |
|
|
|
if name is None: |
|
name = s.name |
|
|
|
return (name, type(s), s.args, dtype, broadcastable) |
|
|
|
def _get_or_create(self, s, name=None, dtype=None, broadcastable=None): |
|
""" |
|
Get the Aesara variable for a SymPy symbol from the cache, or create it |
|
if it does not exist. |
|
""" |
|
|
|
|
|
if name is None: |
|
name = s.name |
|
if dtype is None: |
|
dtype = 'floatX' |
|
if broadcastable is None: |
|
broadcastable = () |
|
|
|
key = self._get_key(s, name, dtype=dtype, broadcastable=broadcastable) |
|
|
|
if key in self.cache: |
|
return self.cache[key] |
|
|
|
value = aet.tensor(name=name, dtype=dtype, shape=broadcastable) |
|
self.cache[key] = value |
|
return value |
|
|
|
def _print_Symbol(self, s, **kwargs): |
|
dtype = kwargs.get('dtypes', {}).get(s) |
|
bc = kwargs.get('broadcastables', {}).get(s) |
|
return self._get_or_create(s, dtype=dtype, broadcastable=bc) |
|
|
|
def _print_AppliedUndef(self, s, **kwargs): |
|
name = str(type(s)) + '_' + str(s.args[0]) |
|
dtype = kwargs.get('dtypes', {}).get(s) |
|
bc = kwargs.get('broadcastables', {}).get(s) |
|
return self._get_or_create(s, name=name, dtype=dtype, broadcastable=bc) |
|
|
|
def _print_Basic(self, expr, **kwargs): |
|
op = mapping[type(expr)] |
|
children = [self._print(arg, **kwargs) for arg in expr.args] |
|
return op(*children) |
|
|
|
def _print_Number(self, n, **kwargs): |
|
|
|
return float(n.evalf()) |
|
|
|
def _print_MatrixSymbol(self, X, **kwargs): |
|
dtype = kwargs.get('dtypes', {}).get(X) |
|
return self._get_or_create(X, dtype=dtype, broadcastable=(None, None)) |
|
|
|
def _print_DenseMatrix(self, X, **kwargs): |
|
if not hasattr(aet, 'stacklists'): |
|
raise NotImplementedError( |
|
"Matrix translation not yet supported in this version of Aesara") |
|
|
|
return aet.stacklists([ |
|
[self._print(arg, **kwargs) for arg in L] |
|
for L in X.tolist() |
|
]) |
|
|
|
_print_ImmutableMatrix = _print_ImmutableDenseMatrix = _print_DenseMatrix |
|
|
|
def _print_MatMul(self, expr, **kwargs): |
|
children = [self._print(arg, **kwargs) for arg in expr.args] |
|
result = children[0] |
|
for child in children[1:]: |
|
result = aet.dot(result, child) |
|
return result |
|
|
|
def _print_MatPow(self, expr, **kwargs): |
|
children = [self._print(arg, **kwargs) for arg in expr.args] |
|
result = 1 |
|
if isinstance(children[1], int) and children[1] > 0: |
|
for i in range(children[1]): |
|
result = aet.dot(result, children[0]) |
|
else: |
|
raise NotImplementedError('''Only non-negative integer |
|
powers of matrices can be handled by Aesara at the moment''') |
|
return result |
|
|
|
def _print_MatrixSlice(self, expr, **kwargs): |
|
parent = self._print(expr.parent, **kwargs) |
|
rowslice = self._print(slice(*expr.rowslice), **kwargs) |
|
colslice = self._print(slice(*expr.colslice), **kwargs) |
|
return parent[rowslice, colslice] |
|
|
|
def _print_BlockMatrix(self, expr, **kwargs): |
|
nrows, ncols = expr.blocks.shape |
|
blocks = [[self._print(expr.blocks[r, c], **kwargs) |
|
for c in range(ncols)] |
|
for r in range(nrows)] |
|
return aet.join(0, *[aet.join(1, *row) for row in blocks]) |
|
|
|
|
|
def _print_slice(self, expr, **kwargs): |
|
return slice(*[self._print(i, **kwargs) |
|
if isinstance(i, sympy.Basic) else i |
|
for i in (expr.start, expr.stop, expr.step)]) |
|
|
|
def _print_Pi(self, expr, **kwargs): |
|
return math.pi |
|
|
|
def _print_Piecewise(self, expr, **kwargs): |
|
import numpy as np |
|
e, cond = expr.args[0].args |
|
|
|
|
|
p_cond = self._print(cond, **kwargs) |
|
p_e = self._print(e, **kwargs) |
|
|
|
|
|
if len(expr.args) == 1: |
|
|
|
return aet.switch(p_cond, p_e, np.nan) |
|
|
|
|
|
p_remaining = self._print(sympy.Piecewise(*expr.args[1:]), **kwargs) |
|
return aet.switch(p_cond, p_e, p_remaining) |
|
|
|
def _print_Rational(self, expr, **kwargs): |
|
return true_divide(self._print(expr.p, **kwargs), |
|
self._print(expr.q, **kwargs)) |
|
|
|
def _print_Integer(self, expr, **kwargs): |
|
return expr.p |
|
|
|
def _print_factorial(self, expr, **kwargs): |
|
return self._print(sympy.gamma(expr.args[0] + 1), **kwargs) |
|
|
|
def _print_Derivative(self, deriv, **kwargs): |
|
from aesara.gradient import Rop |
|
|
|
rv = self._print(deriv.expr, **kwargs) |
|
for var in deriv.variables: |
|
var = self._print(var, **kwargs) |
|
rv = Rop(rv, var, aet.ones_like(var)) |
|
return rv |
|
|
|
def emptyPrinter(self, expr): |
|
return expr |
|
|
|
def doprint(self, expr, dtypes=None, broadcastables=None): |
|
""" Convert a SymPy expression to a Aesara graph variable. |
|
|
|
The ``dtypes`` and ``broadcastables`` arguments are used to specify the |
|
data type, dimension, and broadcasting behavior of the Aesara variables |
|
corresponding to the free symbols in ``expr``. Each is a mapping from |
|
SymPy symbols to the value of the corresponding argument to |
|
``aesara.tensor.var.TensorVariable``. |
|
|
|
See the corresponding `documentation page`__ for more information on |
|
broadcasting in Aesara. |
|
|
|
|
|
.. __: https://aesara.readthedocs.io/en/latest/reference/tensor/shapes.html#broadcasting |
|
|
|
Parameters |
|
========== |
|
|
|
expr : sympy.core.expr.Expr |
|
SymPy expression to print. |
|
|
|
dtypes : dict |
|
Mapping from SymPy symbols to Aesara datatypes to use when creating |
|
new Aesara variables for those symbols. Corresponds to the ``dtype`` |
|
argument to ``aesara.tensor.var.TensorVariable``. Defaults to ``'floatX'`` |
|
for symbols not included in the mapping. |
|
|
|
broadcastables : dict |
|
Mapping from SymPy symbols to the value of the ``broadcastable`` |
|
argument to ``aesara.tensor.var.TensorVariable`` to use when creating Aesara |
|
variables for those symbols. Defaults to the empty tuple for symbols |
|
not included in the mapping (resulting in a scalar). |
|
|
|
Returns |
|
======= |
|
|
|
aesara.graph.basic.Variable |
|
A variable corresponding to the expression's value in a Aesara |
|
symbolic expression graph. |
|
|
|
""" |
|
if dtypes is None: |
|
dtypes = {} |
|
if broadcastables is None: |
|
broadcastables = {} |
|
|
|
return self._print(expr, dtypes=dtypes, broadcastables=broadcastables) |
|
|
|
|
|
global_cache: dict[Any, Any] = {} |
|
|
|
|
|
def aesara_code(expr, cache=None, **kwargs): |
|
""" |
|
Convert a SymPy expression into a Aesara graph variable. |
|
|
|
Parameters |
|
========== |
|
|
|
expr : sympy.core.expr.Expr |
|
SymPy expression object to convert. |
|
|
|
cache : dict |
|
Cached Aesara variables (see :class:`AesaraPrinter.cache |
|
<AesaraPrinter>`). Defaults to the module-level global cache. |
|
|
|
dtypes : dict |
|
Passed to :meth:`.AesaraPrinter.doprint`. |
|
|
|
broadcastables : dict |
|
Passed to :meth:`.AesaraPrinter.doprint`. |
|
|
|
Returns |
|
======= |
|
|
|
aesara.graph.basic.Variable |
|
A variable corresponding to the expression's value in a Aesara symbolic |
|
expression graph. |
|
|
|
""" |
|
sympy_deprecation_warning( |
|
""" |
|
The aesara_code function is deprecated. |
|
""", |
|
deprecated_since_version="1.14", |
|
active_deprecations_target='deprecated-aesaraprinter', |
|
) |
|
|
|
if not aesara: |
|
raise ImportError("aesara is required for aesara_code") |
|
|
|
if cache is None: |
|
cache = global_cache |
|
|
|
return AesaraPrinter(cache=cache, settings={}).doprint(expr, **kwargs) |
|
|
|
|
|
def dim_handling(inputs, dim=None, dims=None, broadcastables=None): |
|
r""" |
|
Get value of ``broadcastables`` argument to :func:`.aesara_code` from |
|
keyword arguments to :func:`.aesara_function`. |
|
|
|
Included for backwards compatibility. |
|
|
|
Parameters |
|
========== |
|
|
|
inputs |
|
Sequence of input symbols. |
|
|
|
dim : int |
|
Common number of dimensions for all inputs. Overrides other arguments |
|
if given. |
|
|
|
dims : dict |
|
Mapping from input symbols to number of dimensions. Overrides |
|
``broadcastables`` argument if given. |
|
|
|
broadcastables : dict |
|
Explicit value of ``broadcastables`` argument to |
|
:meth:`.AesaraPrinter.doprint`. If not None function will return this value unchanged. |
|
|
|
Returns |
|
======= |
|
dict |
|
Dictionary mapping elements of ``inputs`` to their "broadcastable" |
|
values (tuple of ``bool``\ s). |
|
""" |
|
if dim is not None: |
|
return dict.fromkeys(inputs, (False,) * dim) |
|
|
|
if dims is not None: |
|
maxdim = max(dims.values()) |
|
return { |
|
s: (False,) * d + (True,) * (maxdim - d) |
|
for s, d in dims.items() |
|
} |
|
|
|
if broadcastables is not None: |
|
return broadcastables |
|
|
|
return {} |
|
|
|
|
|
def aesara_function(inputs, outputs, scalar=False, *, |
|
dim=None, dims=None, broadcastables=None, **kwargs): |
|
""" |
|
Create a Aesara function from SymPy expressions. |
|
|
|
The inputs and outputs are converted to Aesara variables using |
|
:func:`.aesara_code` and then passed to ``aesara.function``. |
|
|
|
Parameters |
|
========== |
|
|
|
inputs |
|
Sequence of symbols which constitute the inputs of the function. |
|
|
|
outputs |
|
Sequence of expressions which constitute the outputs(s) of the |
|
function. The free symbols of each expression must be a subset of |
|
``inputs``. |
|
|
|
scalar : bool |
|
Convert 0-dimensional arrays in output to scalars. This will return a |
|
Python wrapper function around the Aesara function object. |
|
|
|
cache : dict |
|
Cached Aesara variables (see :class:`AesaraPrinter.cache |
|
<AesaraPrinter>`). Defaults to the module-level global cache. |
|
|
|
dtypes : dict |
|
Passed to :meth:`.AesaraPrinter.doprint`. |
|
|
|
broadcastables : dict |
|
Passed to :meth:`.AesaraPrinter.doprint`. |
|
|
|
dims : dict |
|
Alternative to ``broadcastables`` argument. Mapping from elements of |
|
``inputs`` to integers indicating the dimension of their associated |
|
arrays/tensors. Overrides ``broadcastables`` argument if given. |
|
|
|
dim : int |
|
Another alternative to the ``broadcastables`` argument. Common number of |
|
dimensions to use for all arrays/tensors. |
|
``aesara_function([x, y], [...], dim=2)`` is equivalent to using |
|
``broadcastables={x: (False, False), y: (False, False)}``. |
|
|
|
Returns |
|
======= |
|
callable |
|
A callable object which takes values of ``inputs`` as positional |
|
arguments and returns an output array for each of the expressions |
|
in ``outputs``. If ``outputs`` is a single expression the function will |
|
return a Numpy array, if it is a list of multiple expressions the |
|
function will return a list of arrays. See description of the ``squeeze`` |
|
argument above for the behavior when a single output is passed in a list. |
|
The returned object will either be an instance of |
|
``aesara.compile.function.types.Function`` or a Python wrapper |
|
function around one. In both cases, the returned value will have a |
|
``aesara_function`` attribute which points to the return value of |
|
``aesara.function``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y, z |
|
>>> from sympy.printing.aesaracode import aesara_function |
|
|
|
A simple function with one input and one output: |
|
|
|
>>> f1 = aesara_function([x], [x**2 - 1], scalar=True) |
|
>>> f1(3) |
|
8.0 |
|
|
|
A function with multiple inputs and one output: |
|
|
|
>>> f2 = aesara_function([x, y, z], [(x**z + y**z)**(1/z)], scalar=True) |
|
>>> f2(3, 4, 2) |
|
5.0 |
|
|
|
A function with multiple inputs and multiple outputs: |
|
|
|
>>> f3 = aesara_function([x, y], [x**2 + y**2, x**2 - y**2], scalar=True) |
|
>>> f3(2, 3) |
|
[13.0, -5.0] |
|
|
|
See also |
|
======== |
|
|
|
dim_handling |
|
|
|
""" |
|
sympy_deprecation_warning( |
|
""" |
|
The aesara_function function is deprecated. |
|
""", |
|
deprecated_since_version="1.14", |
|
active_deprecations_target='deprecated-aesaraprinter', |
|
) |
|
|
|
if not aesara: |
|
raise ImportError("Aesara is required for aesara_function") |
|
|
|
|
|
cache = kwargs.pop('cache', {}) |
|
dtypes = kwargs.pop('dtypes', {}) |
|
|
|
broadcastables = dim_handling( |
|
inputs, dim=dim, dims=dims, broadcastables=broadcastables, |
|
) |
|
|
|
|
|
code = partial(aesara_code, cache=cache, dtypes=dtypes, |
|
broadcastables=broadcastables) |
|
tinputs = list(map(code, inputs)) |
|
toutputs = list(map(code, outputs)) |
|
|
|
|
|
toutputs = [output if isinstance(output, aesara.graph.basic.Variable) else aet.as_tensor_variable(output) for output in toutputs] |
|
|
|
if len(toutputs) == 1: |
|
toutputs = toutputs[0] |
|
|
|
|
|
func = aesara.function(tinputs, toutputs, **kwargs) |
|
|
|
is_0d = [len(o.variable.broadcastable) == 0 for o in func.outputs] |
|
|
|
|
|
if not scalar or not any(is_0d): |
|
func.aesara_function = func |
|
return func |
|
|
|
|
|
def wrapper(*args): |
|
out = func(*args) |
|
|
|
|
|
if is_sequence(out): |
|
return [o[()] if is_0d[i] else o for i, o in enumerate(out)] |
|
else: |
|
return out[()] |
|
|
|
wrapper.__wrapped__ = func |
|
wrapper.__doc__ = func.__doc__ |
|
wrapper.aesara_function = func |
|
return wrapper |
|
|