|
"""Tests for high-level polynomials manipulation functions. """ |
|
|
|
from sympy.polys.polyfuncs import ( |
|
symmetrize, horner, interpolate, rational_interpolate, viete, |
|
) |
|
|
|
from sympy.polys.polyerrors import ( |
|
MultivariatePolynomialError, |
|
) |
|
|
|
from sympy.core.singleton import S |
|
from sympy.core.symbol import symbols |
|
from sympy.testing.pytest import raises |
|
|
|
from sympy.abc import a, b, c, d, e, x, y, z |
|
|
|
|
|
def test_symmetrize(): |
|
assert symmetrize(0, x, y, z) == (0, 0) |
|
assert symmetrize(1, x, y, z) == (1, 0) |
|
|
|
s1 = x + y + z |
|
s2 = x*y + x*z + y*z |
|
|
|
assert symmetrize(1) == (1, 0) |
|
assert symmetrize(1, formal=True) == (1, 0, []) |
|
|
|
assert symmetrize(x) == (x, 0) |
|
assert symmetrize(x + 1) == (x + 1, 0) |
|
|
|
assert symmetrize(x, x, y) == (x + y, -y) |
|
assert symmetrize(x + 1, x, y) == (x + y + 1, -y) |
|
|
|
assert symmetrize(x, x, y, z) == (s1, -y - z) |
|
assert symmetrize(x + 1, x, y, z) == (s1 + 1, -y - z) |
|
|
|
assert symmetrize(x**2, x, y, z) == (s1**2 - 2*s2, -y**2 - z**2) |
|
|
|
assert symmetrize(x**2 + y**2) == (-2*x*y + (x + y)**2, 0) |
|
assert symmetrize(x**2 - y**2) == (-2*x*y + (x + y)**2, -2*y**2) |
|
|
|
assert symmetrize(x**3 + y**2 + a*x**2 + b*y**3, x, y) == \ |
|
(-3*x*y*(x + y) - 2*a*x*y + a*(x + y)**2 + (x + y)**3, |
|
y**2*(1 - a) + y**3*(b - 1)) |
|
|
|
U = [u0, u1, u2] = symbols('u:3') |
|
|
|
assert symmetrize(x + 1, x, y, z, formal=True, symbols=U) == \ |
|
(u0 + 1, -y - z, [(u0, x + y + z), (u1, x*y + x*z + y*z), (u2, x*y*z)]) |
|
|
|
assert symmetrize([1, 2, 3]) == [(1, 0), (2, 0), (3, 0)] |
|
assert symmetrize([1, 2, 3], formal=True) == ([(1, 0), (2, 0), (3, 0)], []) |
|
|
|
assert symmetrize([x + y, x - y]) == [(x + y, 0), (x + y, -2*y)] |
|
|
|
|
|
def test_horner(): |
|
assert horner(0) == 0 |
|
assert horner(1) == 1 |
|
assert horner(x) == x |
|
|
|
assert horner(x + 1) == x + 1 |
|
assert horner(x**2 + 1) == x**2 + 1 |
|
assert horner(x**2 + x) == (x + 1)*x |
|
assert horner(x**2 + x + 1) == (x + 1)*x + 1 |
|
|
|
assert horner( |
|
9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5) == (((9*x + 8)*x + 7)*x + 6)*x + 5 |
|
assert horner( |
|
a*x**4 + b*x**3 + c*x**2 + d*x + e) == (((a*x + b)*x + c)*x + d)*x + e |
|
|
|
assert horner(4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y, wrt=x) == (( |
|
4*y + 2)*x*y + (2*y + 1)*y)*x |
|
assert horner(4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y, wrt=y) == (( |
|
4*x + 2)*y*x + (2*x + 1)*x)*y |
|
|
|
|
|
def test_interpolate(): |
|
assert interpolate([1, 4, 9, 16], x) == x**2 |
|
assert interpolate([1, 4, 9, 25], x) == S(3)*x**3/2 - S(8)*x**2 + S(33)*x/2 - 9 |
|
assert interpolate([(1, 1), (2, 4), (3, 9)], x) == x**2 |
|
assert interpolate([(1, 2), (2, 5), (3, 10)], x) == 1 + x**2 |
|
assert interpolate({1: 2, 2: 5, 3: 10}, x) == 1 + x**2 |
|
assert interpolate({5: 2, 7: 5, 8: 10, 9: 13}, x) == \ |
|
-S(13)*x**3/24 + S(12)*x**2 - S(2003)*x/24 + 187 |
|
assert interpolate([(1, 3), (0, 6), (2, 5), (5, 7), (-2, 4)], x) == \ |
|
S(-61)*x**4/280 + S(247)*x**3/210 + S(139)*x**2/280 - S(1871)*x/420 + 6 |
|
assert interpolate((9, 4, 9), 3) == 9 |
|
assert interpolate((1, 9, 16), 1) is S.One |
|
assert interpolate(((x, 1), (2, 3)), x) is S.One |
|
assert interpolate({x: 1, 2: 3}, x) is S.One |
|
assert interpolate(((2, x), (1, 3)), x) == x**2 - 4*x + 6 |
|
|
|
|
|
def test_rational_interpolate(): |
|
x, y = symbols('x,y') |
|
xdata = [1, 2, 3, 4, 5, 6] |
|
ydata1 = [120, 150, 200, 255, 312, 370] |
|
ydata2 = [-210, -35, 105, 231, 350, 465] |
|
assert rational_interpolate(list(zip(xdata, ydata1)), 2) == ( |
|
(60*x**2 + 60)/x ) |
|
assert rational_interpolate(list(zip(xdata, ydata1)), 3) == ( |
|
(60*x**2 + 60)/x ) |
|
assert rational_interpolate(list(zip(xdata, ydata2)), 2, X=y) == ( |
|
(105*y**2 - 525)/(y + 1) ) |
|
xdata = list(range(1,11)) |
|
ydata = [-1923885361858460, -5212158811973685, -9838050145867125, |
|
-15662936261217245, -22469424125057910, -30073793365223685, |
|
-38332297297028735, -47132954289530109, -56387719094026320, |
|
-66026548943876885] |
|
assert rational_interpolate(list(zip(xdata, ydata)), 5) == ( |
|
(-12986226192544605*x**4 + |
|
8657484128363070*x**3 - 30301194449270745*x**2 + 4328742064181535*x |
|
- 4328742064181535)/(x**3 + 9*x**2 - 3*x + 11)) |
|
|
|
|
|
def test_viete(): |
|
r1, r2 = symbols('r1, r2') |
|
|
|
assert viete( |
|
a*x**2 + b*x + c, [r1, r2], x) == [(r1 + r2, -b/a), (r1*r2, c/a)] |
|
|
|
raises(ValueError, lambda: viete(1, [], x)) |
|
raises(ValueError, lambda: viete(x**2 + 1, [r1])) |
|
|
|
raises(MultivariatePolynomialError, lambda: viete(x + y, [r1])) |
|
|