|
from hypothesis import given |
|
from hypothesis import strategies as st |
|
from sympy.abc import x |
|
from sympy.polys.polytools import Poly |
|
|
|
|
|
def polys(*, nonzero=False, domain="ZZ"): |
|
|
|
elems = {"ZZ": st.integers(), "QQ": st.fractions()} |
|
coeff_st = st.lists(elems[domain]) |
|
if nonzero: |
|
coeff_st = coeff_st.filter(any) |
|
return st.builds(Poly, coeff_st, st.just(x), domain=st.just(domain)) |
|
|
|
|
|
@given(f=polys(), g=polys(), r=polys()) |
|
def test_gcd_hypothesis(f, g, r): |
|
gcd_1 = f.gcd(g) |
|
gcd_2 = g.gcd(f) |
|
assert gcd_1 == gcd_2 |
|
|
|
|
|
gcd_3 = g.gcd(f + r * g) |
|
assert gcd_1 == gcd_3 |
|
|
|
|
|
@given(f_z=polys(), g_z=polys(nonzero=True)) |
|
def test_poly_hypothesis_integers(f_z, g_z): |
|
remainder_z = f_z.rem(g_z) |
|
assert g_z.degree() >= remainder_z.degree() or remainder_z.degree() == 0 |
|
|
|
|
|
@given(f_q=polys(domain="QQ"), g_q=polys(nonzero=True, domain="QQ")) |
|
def test_poly_hypothesis_rationals(f_q, g_q): |
|
remainder_q = f_q.rem(g_q) |
|
assert g_q.degree() >= remainder_q.degree() or remainder_q.degree() == 0 |
|
|