|
""" |
|
This module contains functions for two multivariate resultants. These |
|
are: |
|
|
|
- Dixon's resultant. |
|
- Macaulay's resultant. |
|
|
|
Multivariate resultants are used to identify whether a multivariate |
|
system has common roots. That is when the resultant is equal to zero. |
|
""" |
|
from math import prod |
|
|
|
from sympy.core.mul import Mul |
|
from sympy.matrices.dense import (Matrix, diag) |
|
from sympy.polys.polytools import (Poly, degree_list, rem) |
|
from sympy.simplify.simplify import simplify |
|
from sympy.tensor.indexed import IndexedBase |
|
from sympy.polys.monomials import itermonomials, monomial_deg |
|
from sympy.polys.orderings import monomial_key |
|
from sympy.polys.polytools import poly_from_expr, total_degree |
|
from sympy.functions.combinatorial.factorials import binomial |
|
from itertools import combinations_with_replacement |
|
from sympy.utilities.exceptions import sympy_deprecation_warning |
|
|
|
class DixonResultant(): |
|
""" |
|
A class for retrieving the Dixon's resultant of a multivariate |
|
system. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import symbols |
|
|
|
>>> from sympy.polys.multivariate_resultants import DixonResultant |
|
>>> x, y = symbols('x, y') |
|
|
|
>>> p = x + y |
|
>>> q = x ** 2 + y ** 3 |
|
>>> h = x ** 2 + y |
|
|
|
>>> dixon = DixonResultant(variables=[x, y], polynomials=[p, q, h]) |
|
>>> poly = dixon.get_dixon_polynomial() |
|
>>> matrix = dixon.get_dixon_matrix(polynomial=poly) |
|
>>> matrix |
|
Matrix([ |
|
[ 0, 0, -1, 0, -1], |
|
[ 0, -1, 0, -1, 0], |
|
[-1, 0, 1, 0, 0], |
|
[ 0, -1, 0, 0, 1], |
|
[-1, 0, 0, 1, 0]]) |
|
>>> matrix.det() |
|
0 |
|
|
|
See Also |
|
======== |
|
|
|
Notebook in examples: sympy/example/notebooks. |
|
|
|
References |
|
========== |
|
|
|
.. [1] [Kapur1994]_ |
|
.. [2] [Palancz08]_ |
|
|
|
""" |
|
|
|
def __init__(self, polynomials, variables): |
|
""" |
|
A class that takes two lists, a list of polynomials and list of |
|
variables. Returns the Dixon matrix of the multivariate system. |
|
|
|
Parameters |
|
---------- |
|
polynomials : list of polynomials |
|
A list of m n-degree polynomials |
|
variables: list |
|
A list of all n variables |
|
""" |
|
self.polynomials = polynomials |
|
self.variables = variables |
|
|
|
self.n = len(self.variables) |
|
self.m = len(self.polynomials) |
|
|
|
a = IndexedBase("alpha") |
|
|
|
self.dummy_variables = [a[i] for i in range(self.n)] |
|
|
|
|
|
self._max_degrees = [max(degree_list(poly)[i] for poly in self.polynomials) |
|
for i in range(self.n)] |
|
|
|
@property |
|
def max_degrees(self): |
|
sympy_deprecation_warning( |
|
""" |
|
The max_degrees property of DixonResultant is deprecated. |
|
""", |
|
deprecated_since_version="1.5", |
|
active_deprecations_target="deprecated-dixonresultant-properties", |
|
) |
|
return self._max_degrees |
|
|
|
def get_dixon_polynomial(self): |
|
r""" |
|
Returns |
|
======= |
|
|
|
dixon_polynomial: polynomial |
|
Dixon's polynomial is calculated as: |
|
|
|
delta = Delta(A) / ((x_1 - a_1) ... (x_n - a_n)) where, |
|
|
|
A = |p_1(x_1,... x_n), ..., p_n(x_1,... x_n)| |
|
|p_1(a_1,... x_n), ..., p_n(a_1,... x_n)| |
|
|... , ..., ...| |
|
|p_1(a_1,... a_n), ..., p_n(a_1,... a_n)| |
|
""" |
|
if self.m != (self.n + 1): |
|
raise ValueError('Method invalid for given combination.') |
|
|
|
|
|
rows = [self.polynomials] |
|
|
|
temp = list(self.variables) |
|
|
|
for idx in range(self.n): |
|
temp[idx] = self.dummy_variables[idx] |
|
substitution = dict(zip(self.variables, temp)) |
|
rows.append([f.subs(substitution) for f in self.polynomials]) |
|
|
|
A = Matrix(rows) |
|
|
|
terms = zip(self.variables, self.dummy_variables) |
|
product_of_differences = Mul(*[a - b for a, b in terms]) |
|
dixon_polynomial = (A.det() / product_of_differences).factor() |
|
|
|
return poly_from_expr(dixon_polynomial, self.dummy_variables)[0] |
|
|
|
def get_upper_degree(self): |
|
sympy_deprecation_warning( |
|
""" |
|
The get_upper_degree() method of DixonResultant is deprecated. Use |
|
get_max_degrees() instead. |
|
""", |
|
deprecated_since_version="1.5", |
|
active_deprecations_target="deprecated-dixonresultant-properties" |
|
) |
|
list_of_products = [self.variables[i] ** self._max_degrees[i] |
|
for i in range(self.n)] |
|
product = prod(list_of_products) |
|
product = Poly(product).monoms() |
|
|
|
return monomial_deg(*product) |
|
|
|
def get_max_degrees(self, polynomial): |
|
r""" |
|
Returns a list of the maximum degree of each variable appearing |
|
in the coefficients of the Dixon polynomial. The coefficients are |
|
viewed as polys in $x_1, x_2, \dots, x_n$. |
|
""" |
|
deg_lists = [degree_list(Poly(poly, self.variables)) |
|
for poly in polynomial.coeffs()] |
|
|
|
max_degrees = [max(degs) for degs in zip(*deg_lists)] |
|
|
|
return max_degrees |
|
|
|
def get_dixon_matrix(self, polynomial): |
|
r""" |
|
Construct the Dixon matrix from the coefficients of polynomial |
|
\alpha. Each coefficient is viewed as a polynomial of x_1, ..., |
|
x_n. |
|
""" |
|
|
|
max_degrees = self.get_max_degrees(polynomial) |
|
|
|
|
|
monomials = itermonomials(self.variables, max_degrees) |
|
monomials = sorted(monomials, reverse=True, |
|
key=monomial_key('lex', self.variables)) |
|
|
|
dixon_matrix = Matrix([[Poly(c, *self.variables).coeff_monomial(m) |
|
for m in monomials] |
|
for c in polynomial.coeffs()]) |
|
|
|
|
|
if dixon_matrix.shape[0] != dixon_matrix.shape[1]: |
|
keep = [column for column in range(dixon_matrix.shape[-1]) |
|
if any(element != 0 for element |
|
in dixon_matrix[:, column])] |
|
|
|
dixon_matrix = dixon_matrix[:, keep] |
|
|
|
return dixon_matrix |
|
|
|
def KSY_precondition(self, matrix): |
|
""" |
|
Test for the validity of the Kapur-Saxena-Yang precondition. |
|
|
|
The precondition requires that the column corresponding to the |
|
monomial 1 = x_1 ^ 0 * x_2 ^ 0 * ... * x_n ^ 0 is not a linear |
|
combination of the remaining ones. In SymPy notation this is |
|
the last column. For the precondition to hold the last non-zero |
|
row of the rref matrix should be of the form [0, 0, ..., 1]. |
|
""" |
|
if matrix.is_zero_matrix: |
|
return False |
|
|
|
m, n = matrix.shape |
|
|
|
|
|
matrix = simplify(matrix.rref()[0]) |
|
rows = [i for i in range(m) if any(matrix[i, j] != 0 for j in range(n))] |
|
matrix = matrix[rows,:] |
|
|
|
condition = Matrix([[0]*(n-1) + [1]]) |
|
|
|
if matrix[-1,:] == condition: |
|
return True |
|
else: |
|
return False |
|
|
|
def delete_zero_rows_and_columns(self, matrix): |
|
"""Remove the zero rows and columns of the matrix.""" |
|
rows = [ |
|
i for i in range(matrix.rows) if not matrix.row(i).is_zero_matrix] |
|
cols = [ |
|
j for j in range(matrix.cols) if not matrix.col(j).is_zero_matrix] |
|
|
|
return matrix[rows, cols] |
|
|
|
def product_leading_entries(self, matrix): |
|
"""Calculate the product of the leading entries of the matrix.""" |
|
res = 1 |
|
for row in range(matrix.rows): |
|
for el in matrix.row(row): |
|
if el != 0: |
|
res = res * el |
|
break |
|
return res |
|
|
|
def get_KSY_Dixon_resultant(self, matrix): |
|
"""Calculate the Kapur-Saxena-Yang approach to the Dixon Resultant.""" |
|
matrix = self.delete_zero_rows_and_columns(matrix) |
|
_, U, _ = matrix.LUdecomposition() |
|
matrix = self.delete_zero_rows_and_columns(simplify(U)) |
|
|
|
return self.product_leading_entries(matrix) |
|
|
|
class MacaulayResultant(): |
|
""" |
|
A class for calculating the Macaulay resultant. Note that the |
|
polynomials must be homogenized and their coefficients must be |
|
given as symbols. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import symbols |
|
|
|
>>> from sympy.polys.multivariate_resultants import MacaulayResultant |
|
>>> x, y, z = symbols('x, y, z') |
|
|
|
>>> a_0, a_1, a_2 = symbols('a_0, a_1, a_2') |
|
>>> b_0, b_1, b_2 = symbols('b_0, b_1, b_2') |
|
>>> c_0, c_1, c_2,c_3, c_4 = symbols('c_0, c_1, c_2, c_3, c_4') |
|
|
|
>>> f = a_0 * y - a_1 * x + a_2 * z |
|
>>> g = b_1 * x ** 2 + b_0 * y ** 2 - b_2 * z ** 2 |
|
>>> h = c_0 * y * z ** 2 - c_1 * x ** 3 + c_2 * x ** 2 * z - c_3 * x * z ** 2 + c_4 * z ** 3 |
|
|
|
>>> mac = MacaulayResultant(polynomials=[f, g, h], variables=[x, y, z]) |
|
>>> mac.monomial_set |
|
[x**4, x**3*y, x**3*z, x**2*y**2, x**2*y*z, x**2*z**2, x*y**3, |
|
x*y**2*z, x*y*z**2, x*z**3, y**4, y**3*z, y**2*z**2, y*z**3, z**4] |
|
>>> matrix = mac.get_matrix() |
|
>>> submatrix = mac.get_submatrix(matrix) |
|
>>> submatrix |
|
Matrix([ |
|
[-a_1, a_0, a_2, 0], |
|
[ 0, -a_1, 0, 0], |
|
[ 0, 0, -a_1, 0], |
|
[ 0, 0, 0, -a_1]]) |
|
|
|
See Also |
|
======== |
|
|
|
Notebook in examples: sympy/example/notebooks. |
|
|
|
References |
|
========== |
|
|
|
.. [1] [Bruce97]_ |
|
.. [2] [Stiller96]_ |
|
|
|
""" |
|
def __init__(self, polynomials, variables): |
|
""" |
|
Parameters |
|
========== |
|
|
|
variables: list |
|
A list of all n variables |
|
polynomials : list of SymPy polynomials |
|
A list of m n-degree polynomials |
|
""" |
|
self.polynomials = polynomials |
|
self.variables = variables |
|
self.n = len(variables) |
|
|
|
|
|
self.degrees = [total_degree(poly, *self.variables) for poly |
|
in self.polynomials] |
|
|
|
self.degree_m = self._get_degree_m() |
|
self.monomials_size = self.get_size() |
|
|
|
|
|
self.monomial_set = self.get_monomials_of_certain_degree(self.degree_m) |
|
|
|
def _get_degree_m(self): |
|
r""" |
|
Returns |
|
======= |
|
|
|
degree_m: int |
|
The degree_m is calculated as 1 + \sum_1 ^ n (d_i - 1), |
|
where d_i is the degree of the i polynomial |
|
""" |
|
return 1 + sum(d - 1 for d in self.degrees) |
|
|
|
def get_size(self): |
|
r""" |
|
Returns |
|
======= |
|
|
|
size: int |
|
The size of set T. Set T is the set of all possible |
|
monomials of the n variables for degree equal to the |
|
degree_m |
|
""" |
|
return binomial(self.degree_m + self.n - 1, self.n - 1) |
|
|
|
def get_monomials_of_certain_degree(self, degree): |
|
""" |
|
Returns |
|
======= |
|
|
|
monomials: list |
|
A list of monomials of a certain degree. |
|
""" |
|
monomials = [Mul(*monomial) for monomial |
|
in combinations_with_replacement(self.variables, |
|
degree)] |
|
|
|
return sorted(monomials, reverse=True, |
|
key=monomial_key('lex', self.variables)) |
|
|
|
def get_row_coefficients(self): |
|
""" |
|
Returns |
|
======= |
|
|
|
row_coefficients: list |
|
The row coefficients of Macaulay's matrix |
|
""" |
|
row_coefficients = [] |
|
divisible = [] |
|
for i in range(self.n): |
|
if i == 0: |
|
degree = self.degree_m - self.degrees[i] |
|
monomial = self.get_monomials_of_certain_degree(degree) |
|
row_coefficients.append(monomial) |
|
else: |
|
divisible.append(self.variables[i - 1] ** |
|
self.degrees[i - 1]) |
|
degree = self.degree_m - self.degrees[i] |
|
poss_rows = self.get_monomials_of_certain_degree(degree) |
|
for div in divisible: |
|
for p in poss_rows: |
|
if rem(p, div) == 0: |
|
poss_rows = [item for item in poss_rows |
|
if item != p] |
|
row_coefficients.append(poss_rows) |
|
return row_coefficients |
|
|
|
def get_matrix(self): |
|
""" |
|
Returns |
|
======= |
|
|
|
macaulay_matrix: Matrix |
|
The Macaulay numerator matrix |
|
""" |
|
rows = [] |
|
row_coefficients = self.get_row_coefficients() |
|
for i in range(self.n): |
|
for multiplier in row_coefficients[i]: |
|
coefficients = [] |
|
poly = Poly(self.polynomials[i] * multiplier, |
|
*self.variables) |
|
|
|
for mono in self.monomial_set: |
|
coefficients.append(poly.coeff_monomial(mono)) |
|
rows.append(coefficients) |
|
|
|
macaulay_matrix = Matrix(rows) |
|
return macaulay_matrix |
|
|
|
def get_reduced_nonreduced(self): |
|
r""" |
|
Returns |
|
======= |
|
|
|
reduced: list |
|
A list of the reduced monomials |
|
non_reduced: list |
|
A list of the monomials that are not reduced |
|
|
|
Definition |
|
========== |
|
|
|
A polynomial is said to be reduced in x_i, if its degree (the |
|
maximum degree of its monomials) in x_i is less than d_i. A |
|
polynomial that is reduced in all variables but one is said |
|
simply to be reduced. |
|
""" |
|
divisible = [] |
|
for m in self.monomial_set: |
|
temp = [] |
|
for i, v in enumerate(self.variables): |
|
temp.append(bool(total_degree(m, v) >= self.degrees[i])) |
|
divisible.append(temp) |
|
reduced = [i for i, r in enumerate(divisible) |
|
if sum(r) < self.n - 1] |
|
non_reduced = [i for i, r in enumerate(divisible) |
|
if sum(r) >= self.n -1] |
|
|
|
return reduced, non_reduced |
|
|
|
def get_submatrix(self, matrix): |
|
r""" |
|
Returns |
|
======= |
|
|
|
macaulay_submatrix: Matrix |
|
The Macaulay denominator matrix. Columns that are non reduced are kept. |
|
The row which contains one of the a_{i}s is dropped. a_{i}s |
|
are the coefficients of x_i ^ {d_i}. |
|
""" |
|
reduced, non_reduced = self.get_reduced_nonreduced() |
|
|
|
|
|
if reduced == []: |
|
return diag([1]) |
|
|
|
|
|
reduction_set = [v ** self.degrees[i] for i, v |
|
in enumerate(self.variables)] |
|
|
|
ais = [self.polynomials[i].coeff(reduction_set[i]) |
|
for i in range(self.n)] |
|
|
|
reduced_matrix = matrix[:, reduced] |
|
keep = [] |
|
for row in range(reduced_matrix.rows): |
|
check = [ai in reduced_matrix[row, :] for ai in ais] |
|
if True not in check: |
|
keep.append(row) |
|
|
|
return matrix[keep, non_reduced] |
|
|