|
from sympy.core.symbol import Dummy |
|
from sympy.ntheory import nextprime |
|
from sympy.ntheory.modular import crt |
|
from sympy.polys.domains import PolynomialRing |
|
from sympy.polys.galoistools import ( |
|
gf_gcd, gf_from_dict, gf_gcdex, gf_div, gf_lcm) |
|
from sympy.polys.polyerrors import ModularGCDFailed |
|
|
|
from mpmath import sqrt |
|
import random |
|
|
|
|
|
def _trivial_gcd(f, g): |
|
""" |
|
Compute the GCD of two polynomials in trivial cases, i.e. when one |
|
or both polynomials are zero. |
|
""" |
|
ring = f.ring |
|
|
|
if not (f or g): |
|
return ring.zero, ring.zero, ring.zero |
|
elif not f: |
|
if g.LC < ring.domain.zero: |
|
return -g, ring.zero, -ring.one |
|
else: |
|
return g, ring.zero, ring.one |
|
elif not g: |
|
if f.LC < ring.domain.zero: |
|
return -f, -ring.one, ring.zero |
|
else: |
|
return f, ring.one, ring.zero |
|
return None |
|
|
|
|
|
def _gf_gcd(fp, gp, p): |
|
r""" |
|
Compute the GCD of two univariate polynomials in `\mathbb{Z}_p[x]`. |
|
""" |
|
dom = fp.ring.domain |
|
|
|
while gp: |
|
rem = fp |
|
deg = gp.degree() |
|
lcinv = dom.invert(gp.LC, p) |
|
|
|
while True: |
|
degrem = rem.degree() |
|
if degrem < deg: |
|
break |
|
rem = (rem - gp.mul_monom((degrem - deg,)).mul_ground(lcinv * rem.LC)).trunc_ground(p) |
|
|
|
fp = gp |
|
gp = rem |
|
|
|
return fp.mul_ground(dom.invert(fp.LC, p)).trunc_ground(p) |
|
|
|
|
|
def _degree_bound_univariate(f, g): |
|
r""" |
|
Compute an upper bound for the degree of the GCD of two univariate |
|
integer polynomials `f` and `g`. |
|
|
|
The function chooses a suitable prime `p` and computes the GCD of |
|
`f` and `g` in `\mathbb{Z}_p[x]`. The choice of `p` guarantees that |
|
the degree in `\mathbb{Z}_p[x]` is greater than or equal to the degree |
|
in `\mathbb{Z}[x]`. |
|
|
|
Parameters |
|
========== |
|
|
|
f : PolyElement |
|
univariate integer polynomial |
|
g : PolyElement |
|
univariate integer polynomial |
|
|
|
""" |
|
gamma = f.ring.domain.gcd(f.LC, g.LC) |
|
p = 1 |
|
|
|
p = nextprime(p) |
|
while gamma % p == 0: |
|
p = nextprime(p) |
|
|
|
fp = f.trunc_ground(p) |
|
gp = g.trunc_ground(p) |
|
hp = _gf_gcd(fp, gp, p) |
|
deghp = hp.degree() |
|
return deghp |
|
|
|
|
|
def _chinese_remainder_reconstruction_univariate(hp, hq, p, q): |
|
r""" |
|
Construct a polynomial `h_{pq}` in `\mathbb{Z}_{p q}[x]` such that |
|
|
|
.. math :: |
|
|
|
h_{pq} = h_p \; \mathrm{mod} \, p |
|
|
|
h_{pq} = h_q \; \mathrm{mod} \, q |
|
|
|
for relatively prime integers `p` and `q` and polynomials |
|
`h_p` and `h_q` in `\mathbb{Z}_p[x]` and `\mathbb{Z}_q[x]` |
|
respectively. |
|
|
|
The coefficients of the polynomial `h_{pq}` are computed with the |
|
Chinese Remainder Theorem. The symmetric representation in |
|
`\mathbb{Z}_p[x]`, `\mathbb{Z}_q[x]` and `\mathbb{Z}_{p q}[x]` is used. |
|
It is assumed that `h_p` and `h_q` have the same degree. |
|
|
|
Parameters |
|
========== |
|
|
|
hp : PolyElement |
|
univariate integer polynomial with coefficients in `\mathbb{Z}_p` |
|
hq : PolyElement |
|
univariate integer polynomial with coefficients in `\mathbb{Z}_q` |
|
p : Integer |
|
modulus of `h_p`, relatively prime to `q` |
|
q : Integer |
|
modulus of `h_q`, relatively prime to `p` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.modulargcd import _chinese_remainder_reconstruction_univariate |
|
>>> from sympy.polys import ring, ZZ |
|
|
|
>>> R, x = ring("x", ZZ) |
|
>>> p = 3 |
|
>>> q = 5 |
|
|
|
>>> hp = -x**3 - 1 |
|
>>> hq = 2*x**3 - 2*x**2 + x |
|
|
|
>>> hpq = _chinese_remainder_reconstruction_univariate(hp, hq, p, q) |
|
>>> hpq |
|
2*x**3 + 3*x**2 + 6*x + 5 |
|
|
|
>>> hpq.trunc_ground(p) == hp |
|
True |
|
>>> hpq.trunc_ground(q) == hq |
|
True |
|
|
|
""" |
|
n = hp.degree() |
|
x = hp.ring.gens[0] |
|
hpq = hp.ring.zero |
|
|
|
for i in range(n+1): |
|
hpq[(i,)] = crt([p, q], [hp.coeff(x**i), hq.coeff(x**i)], symmetric=True)[0] |
|
|
|
hpq.strip_zero() |
|
return hpq |
|
|
|
|
|
def modgcd_univariate(f, g): |
|
r""" |
|
Computes the GCD of two polynomials in `\mathbb{Z}[x]` using a modular |
|
algorithm. |
|
|
|
The algorithm computes the GCD of two univariate integer polynomials |
|
`f` and `g` by computing the GCD in `\mathbb{Z}_p[x]` for suitable |
|
primes `p` and then reconstructing the coefficients with the Chinese |
|
Remainder Theorem. Trial division is only made for candidates which |
|
are very likely the desired GCD. |
|
|
|
Parameters |
|
========== |
|
|
|
f : PolyElement |
|
univariate integer polynomial |
|
g : PolyElement |
|
univariate integer polynomial |
|
|
|
Returns |
|
======= |
|
|
|
h : PolyElement |
|
GCD of the polynomials `f` and `g` |
|
cff : PolyElement |
|
cofactor of `f`, i.e. `\frac{f}{h}` |
|
cfg : PolyElement |
|
cofactor of `g`, i.e. `\frac{g}{h}` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.modulargcd import modgcd_univariate |
|
>>> from sympy.polys import ring, ZZ |
|
|
|
>>> R, x = ring("x", ZZ) |
|
|
|
>>> f = x**5 - 1 |
|
>>> g = x - 1 |
|
|
|
>>> h, cff, cfg = modgcd_univariate(f, g) |
|
>>> h, cff, cfg |
|
(x - 1, x**4 + x**3 + x**2 + x + 1, 1) |
|
|
|
>>> cff * h == f |
|
True |
|
>>> cfg * h == g |
|
True |
|
|
|
>>> f = 6*x**2 - 6 |
|
>>> g = 2*x**2 + 4*x + 2 |
|
|
|
>>> h, cff, cfg = modgcd_univariate(f, g) |
|
>>> h, cff, cfg |
|
(2*x + 2, 3*x - 3, x + 1) |
|
|
|
>>> cff * h == f |
|
True |
|
>>> cfg * h == g |
|
True |
|
|
|
References |
|
========== |
|
|
|
1. [Monagan00]_ |
|
|
|
""" |
|
assert f.ring == g.ring and f.ring.domain.is_ZZ |
|
|
|
result = _trivial_gcd(f, g) |
|
if result is not None: |
|
return result |
|
|
|
ring = f.ring |
|
|
|
cf, f = f.primitive() |
|
cg, g = g.primitive() |
|
ch = ring.domain.gcd(cf, cg) |
|
|
|
bound = _degree_bound_univariate(f, g) |
|
if bound == 0: |
|
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch) |
|
|
|
gamma = ring.domain.gcd(f.LC, g.LC) |
|
m = 1 |
|
p = 1 |
|
|
|
while True: |
|
p = nextprime(p) |
|
while gamma % p == 0: |
|
p = nextprime(p) |
|
|
|
fp = f.trunc_ground(p) |
|
gp = g.trunc_ground(p) |
|
hp = _gf_gcd(fp, gp, p) |
|
deghp = hp.degree() |
|
|
|
if deghp > bound: |
|
continue |
|
elif deghp < bound: |
|
m = 1 |
|
bound = deghp |
|
continue |
|
|
|
hp = hp.mul_ground(gamma).trunc_ground(p) |
|
if m == 1: |
|
m = p |
|
hlastm = hp |
|
continue |
|
|
|
hm = _chinese_remainder_reconstruction_univariate(hp, hlastm, p, m) |
|
m *= p |
|
|
|
if not hm == hlastm: |
|
hlastm = hm |
|
continue |
|
|
|
h = hm.quo_ground(hm.content()) |
|
fquo, frem = f.div(h) |
|
gquo, grem = g.div(h) |
|
if not frem and not grem: |
|
if h.LC < 0: |
|
ch = -ch |
|
h = h.mul_ground(ch) |
|
cff = fquo.mul_ground(cf // ch) |
|
cfg = gquo.mul_ground(cg // ch) |
|
return h, cff, cfg |
|
|
|
|
|
def _primitive(f, p): |
|
r""" |
|
Compute the content and the primitive part of a polynomial in |
|
`\mathbb{Z}_p[x_0, \ldots, x_{k-2}, y] \cong \mathbb{Z}_p[y][x_0, \ldots, x_{k-2}]`. |
|
|
|
Parameters |
|
========== |
|
|
|
f : PolyElement |
|
integer polynomial in `\mathbb{Z}_p[x0, \ldots, x{k-2}, y]` |
|
p : Integer |
|
modulus of `f` |
|
|
|
Returns |
|
======= |
|
|
|
contf : PolyElement |
|
integer polynomial in `\mathbb{Z}_p[y]`, content of `f` |
|
ppf : PolyElement |
|
primitive part of `f`, i.e. `\frac{f}{contf}` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.modulargcd import _primitive |
|
>>> from sympy.polys import ring, ZZ |
|
|
|
>>> R, x, y = ring("x, y", ZZ) |
|
>>> p = 3 |
|
|
|
>>> f = x**2*y**2 + x**2*y - y**2 - y |
|
>>> _primitive(f, p) |
|
(y**2 + y, x**2 - 1) |
|
|
|
>>> R, x, y, z = ring("x, y, z", ZZ) |
|
|
|
>>> f = x*y*z - y**2*z**2 |
|
>>> _primitive(f, p) |
|
(z, x*y - y**2*z) |
|
|
|
""" |
|
ring = f.ring |
|
dom = ring.domain |
|
k = ring.ngens |
|
|
|
coeffs = {} |
|
for monom, coeff in f.iterterms(): |
|
if monom[:-1] not in coeffs: |
|
coeffs[monom[:-1]] = {} |
|
coeffs[monom[:-1]][monom[-1]] = coeff |
|
|
|
cont = [] |
|
for coeff in iter(coeffs.values()): |
|
cont = gf_gcd(cont, gf_from_dict(coeff, p, dom), p, dom) |
|
|
|
yring = ring.clone(symbols=ring.symbols[k-1]) |
|
contf = yring.from_dense(cont).trunc_ground(p) |
|
|
|
return contf, f.quo(contf.set_ring(ring)) |
|
|
|
|
|
def _deg(f): |
|
r""" |
|
Compute the degree of a multivariate polynomial |
|
`f \in K[x_0, \ldots, x_{k-2}, y] \cong K[y][x_0, \ldots, x_{k-2}]`. |
|
|
|
Parameters |
|
========== |
|
|
|
f : PolyElement |
|
polynomial in `K[x_0, \ldots, x_{k-2}, y]` |
|
|
|
Returns |
|
======= |
|
|
|
degf : Integer tuple |
|
degree of `f` in `x_0, \ldots, x_{k-2}` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.modulargcd import _deg |
|
>>> from sympy.polys import ring, ZZ |
|
|
|
>>> R, x, y = ring("x, y", ZZ) |
|
|
|
>>> f = x**2*y**2 + x**2*y - 1 |
|
>>> _deg(f) |
|
(2,) |
|
|
|
>>> R, x, y, z = ring("x, y, z", ZZ) |
|
|
|
>>> f = x**2*y**2 + x**2*y - 1 |
|
>>> _deg(f) |
|
(2, 2) |
|
|
|
>>> f = x*y*z - y**2*z**2 |
|
>>> _deg(f) |
|
(1, 1) |
|
|
|
""" |
|
k = f.ring.ngens |
|
degf = (0,) * (k-1) |
|
for monom in f.itermonoms(): |
|
if monom[:-1] > degf: |
|
degf = monom[:-1] |
|
return degf |
|
|
|
|
|
def _LC(f): |
|
r""" |
|
Compute the leading coefficient of a multivariate polynomial |
|
`f \in K[x_0, \ldots, x_{k-2}, y] \cong K[y][x_0, \ldots, x_{k-2}]`. |
|
|
|
Parameters |
|
========== |
|
|
|
f : PolyElement |
|
polynomial in `K[x_0, \ldots, x_{k-2}, y]` |
|
|
|
Returns |
|
======= |
|
|
|
lcf : PolyElement |
|
polynomial in `K[y]`, leading coefficient of `f` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.modulargcd import _LC |
|
>>> from sympy.polys import ring, ZZ |
|
|
|
>>> R, x, y = ring("x, y", ZZ) |
|
|
|
>>> f = x**2*y**2 + x**2*y - 1 |
|
>>> _LC(f) |
|
y**2 + y |
|
|
|
>>> R, x, y, z = ring("x, y, z", ZZ) |
|
|
|
>>> f = x**2*y**2 + x**2*y - 1 |
|
>>> _LC(f) |
|
1 |
|
|
|
>>> f = x*y*z - y**2*z**2 |
|
>>> _LC(f) |
|
z |
|
|
|
""" |
|
ring = f.ring |
|
k = ring.ngens |
|
yring = ring.clone(symbols=ring.symbols[k-1]) |
|
y = yring.gens[0] |
|
degf = _deg(f) |
|
|
|
lcf = yring.zero |
|
for monom, coeff in f.iterterms(): |
|
if monom[:-1] == degf: |
|
lcf += coeff*y**monom[-1] |
|
return lcf |
|
|
|
|
|
def _swap(f, i): |
|
""" |
|
Make the variable `x_i` the leading one in a multivariate polynomial `f`. |
|
""" |
|
ring = f.ring |
|
fswap = ring.zero |
|
for monom, coeff in f.iterterms(): |
|
monomswap = (monom[i],) + monom[:i] + monom[i+1:] |
|
fswap[monomswap] = coeff |
|
return fswap |
|
|
|
|
|
def _degree_bound_bivariate(f, g): |
|
r""" |
|
Compute upper degree bounds for the GCD of two bivariate |
|
integer polynomials `f` and `g`. |
|
|
|
The GCD is viewed as a polynomial in `\mathbb{Z}[y][x]` and the |
|
function returns an upper bound for its degree and one for the degree |
|
of its content. This is done by choosing a suitable prime `p` and |
|
computing the GCD of the contents of `f \; \mathrm{mod} \, p` and |
|
`g \; \mathrm{mod} \, p`. The choice of `p` guarantees that the degree |
|
of the content in `\mathbb{Z}_p[y]` is greater than or equal to the |
|
degree in `\mathbb{Z}[y]`. To obtain the degree bound in the variable |
|
`x`, the polynomials are evaluated at `y = a` for a suitable |
|
`a \in \mathbb{Z}_p` and then their GCD in `\mathbb{Z}_p[x]` is |
|
computed. If no such `a` exists, i.e. the degree in `\mathbb{Z}_p[x]` |
|
is always smaller than the one in `\mathbb{Z}[y][x]`, then the bound is |
|
set to the minimum of the degrees of `f` and `g` in `x`. |
|
|
|
Parameters |
|
========== |
|
|
|
f : PolyElement |
|
bivariate integer polynomial |
|
g : PolyElement |
|
bivariate integer polynomial |
|
|
|
Returns |
|
======= |
|
|
|
xbound : Integer |
|
upper bound for the degree of the GCD of the polynomials `f` and |
|
`g` in the variable `x` |
|
ycontbound : Integer |
|
upper bound for the degree of the content of the GCD of the |
|
polynomials `f` and `g` in the variable `y` |
|
|
|
References |
|
========== |
|
|
|
1. [Monagan00]_ |
|
|
|
""" |
|
ring = f.ring |
|
|
|
gamma1 = ring.domain.gcd(f.LC, g.LC) |
|
gamma2 = ring.domain.gcd(_swap(f, 1).LC, _swap(g, 1).LC) |
|
badprimes = gamma1 * gamma2 |
|
p = 1 |
|
|
|
p = nextprime(p) |
|
while badprimes % p == 0: |
|
p = nextprime(p) |
|
|
|
fp = f.trunc_ground(p) |
|
gp = g.trunc_ground(p) |
|
contfp, fp = _primitive(fp, p) |
|
contgp, gp = _primitive(gp, p) |
|
conthp = _gf_gcd(contfp, contgp, p) |
|
ycontbound = conthp.degree() |
|
|
|
|
|
delta = _gf_gcd(_LC(fp), _LC(gp), p) |
|
|
|
for a in range(p): |
|
if not delta.evaluate(0, a) % p: |
|
continue |
|
fpa = fp.evaluate(1, a).trunc_ground(p) |
|
gpa = gp.evaluate(1, a).trunc_ground(p) |
|
hpa = _gf_gcd(fpa, gpa, p) |
|
xbound = hpa.degree() |
|
return xbound, ycontbound |
|
|
|
return min(fp.degree(), gp.degree()), ycontbound |
|
|
|
|
|
def _chinese_remainder_reconstruction_multivariate(hp, hq, p, q): |
|
r""" |
|
Construct a polynomial `h_{pq}` in |
|
`\mathbb{Z}_{p q}[x_0, \ldots, x_{k-1}]` such that |
|
|
|
.. math :: |
|
|
|
h_{pq} = h_p \; \mathrm{mod} \, p |
|
|
|
h_{pq} = h_q \; \mathrm{mod} \, q |
|
|
|
for relatively prime integers `p` and `q` and polynomials |
|
`h_p` and `h_q` in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` and |
|
`\mathbb{Z}_q[x_0, \ldots, x_{k-1}]` respectively. |
|
|
|
The coefficients of the polynomial `h_{pq}` are computed with the |
|
Chinese Remainder Theorem. The symmetric representation in |
|
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`, |
|
`\mathbb{Z}_q[x_0, \ldots, x_{k-1}]` and |
|
`\mathbb{Z}_{p q}[x_0, \ldots, x_{k-1}]` is used. |
|
|
|
Parameters |
|
========== |
|
|
|
hp : PolyElement |
|
multivariate integer polynomial with coefficients in `\mathbb{Z}_p` |
|
hq : PolyElement |
|
multivariate integer polynomial with coefficients in `\mathbb{Z}_q` |
|
p : Integer |
|
modulus of `h_p`, relatively prime to `q` |
|
q : Integer |
|
modulus of `h_q`, relatively prime to `p` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.modulargcd import _chinese_remainder_reconstruction_multivariate |
|
>>> from sympy.polys import ring, ZZ |
|
|
|
>>> R, x, y = ring("x, y", ZZ) |
|
>>> p = 3 |
|
>>> q = 5 |
|
|
|
>>> hp = x**3*y - x**2 - 1 |
|
>>> hq = -x**3*y - 2*x*y**2 + 2 |
|
|
|
>>> hpq = _chinese_remainder_reconstruction_multivariate(hp, hq, p, q) |
|
>>> hpq |
|
4*x**3*y + 5*x**2 + 3*x*y**2 + 2 |
|
|
|
>>> hpq.trunc_ground(p) == hp |
|
True |
|
>>> hpq.trunc_ground(q) == hq |
|
True |
|
|
|
>>> R, x, y, z = ring("x, y, z", ZZ) |
|
>>> p = 6 |
|
>>> q = 5 |
|
|
|
>>> hp = 3*x**4 - y**3*z + z |
|
>>> hq = -2*x**4 + z |
|
|
|
>>> hpq = _chinese_remainder_reconstruction_multivariate(hp, hq, p, q) |
|
>>> hpq |
|
3*x**4 + 5*y**3*z + z |
|
|
|
>>> hpq.trunc_ground(p) == hp |
|
True |
|
>>> hpq.trunc_ground(q) == hq |
|
True |
|
|
|
""" |
|
hpmonoms = set(hp.monoms()) |
|
hqmonoms = set(hq.monoms()) |
|
monoms = hpmonoms.intersection(hqmonoms) |
|
hpmonoms.difference_update(monoms) |
|
hqmonoms.difference_update(monoms) |
|
|
|
domain = hp.ring.domain |
|
zero = domain.zero |
|
|
|
hpq = hp.ring.zero |
|
|
|
if isinstance(hp.ring.domain, PolynomialRing): |
|
crt_ = _chinese_remainder_reconstruction_multivariate |
|
else: |
|
def crt_(cp, cq, p, q): |
|
return domain(crt([p, q], [cp, cq], symmetric=True)[0]) |
|
|
|
for monom in monoms: |
|
hpq[monom] = crt_(hp[monom], hq[monom], p, q) |
|
for monom in hpmonoms: |
|
hpq[monom] = crt_(hp[monom], zero, p, q) |
|
for monom in hqmonoms: |
|
hpq[monom] = crt_(zero, hq[monom], p, q) |
|
|
|
return hpq |
|
|
|
|
|
def _interpolate_multivariate(evalpoints, hpeval, ring, i, p, ground=False): |
|
r""" |
|
Reconstruct a polynomial `h_p` in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` |
|
from a list of evaluation points in `\mathbb{Z}_p` and a list of |
|
polynomials in |
|
`\mathbb{Z}_p[x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}]`, which |
|
are the images of `h_p` evaluated in the variable `x_i`. |
|
|
|
It is also possible to reconstruct a parameter of the ground domain, |
|
i.e. if `h_p` is a polynomial over `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`. |
|
In this case, one has to set ``ground=True``. |
|
|
|
Parameters |
|
========== |
|
|
|
evalpoints : list of Integer objects |
|
list of evaluation points in `\mathbb{Z}_p` |
|
hpeval : list of PolyElement objects |
|
list of polynomials in (resp. over) |
|
`\mathbb{Z}_p[x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}]`, |
|
images of `h_p` evaluated in the variable `x_i` |
|
ring : PolyRing |
|
`h_p` will be an element of this ring |
|
i : Integer |
|
index of the variable which has to be reconstructed |
|
p : Integer |
|
prime number, modulus of `h_p` |
|
ground : Boolean |
|
indicates whether `x_i` is in the ground domain, default is |
|
``False`` |
|
|
|
Returns |
|
======= |
|
|
|
hp : PolyElement |
|
interpolated polynomial in (resp. over) |
|
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` |
|
|
|
""" |
|
hp = ring.zero |
|
|
|
if ground: |
|
domain = ring.domain.domain |
|
y = ring.domain.gens[i] |
|
else: |
|
domain = ring.domain |
|
y = ring.gens[i] |
|
|
|
for a, hpa in zip(evalpoints, hpeval): |
|
numer = ring.one |
|
denom = domain.one |
|
for b in evalpoints: |
|
if b == a: |
|
continue |
|
|
|
numer *= y - b |
|
denom *= a - b |
|
|
|
denom = domain.invert(denom, p) |
|
coeff = numer.mul_ground(denom) |
|
hp += hpa.set_ring(ring) * coeff |
|
|
|
return hp.trunc_ground(p) |
|
|
|
|
|
def modgcd_bivariate(f, g): |
|
r""" |
|
Computes the GCD of two polynomials in `\mathbb{Z}[x, y]` using a |
|
modular algorithm. |
|
|
|
The algorithm computes the GCD of two bivariate integer polynomials |
|
`f` and `g` by calculating the GCD in `\mathbb{Z}_p[x, y]` for |
|
suitable primes `p` and then reconstructing the coefficients with the |
|
Chinese Remainder Theorem. To compute the bivariate GCD over |
|
`\mathbb{Z}_p`, the polynomials `f \; \mathrm{mod} \, p` and |
|
`g \; \mathrm{mod} \, p` are evaluated at `y = a` for certain |
|
`a \in \mathbb{Z}_p` and then their univariate GCD in `\mathbb{Z}_p[x]` |
|
is computed. Interpolating those yields the bivariate GCD in |
|
`\mathbb{Z}_p[x, y]`. To verify the result in `\mathbb{Z}[x, y]`, trial |
|
division is done, but only for candidates which are very likely the |
|
desired GCD. |
|
|
|
Parameters |
|
========== |
|
|
|
f : PolyElement |
|
bivariate integer polynomial |
|
g : PolyElement |
|
bivariate integer polynomial |
|
|
|
Returns |
|
======= |
|
|
|
h : PolyElement |
|
GCD of the polynomials `f` and `g` |
|
cff : PolyElement |
|
cofactor of `f`, i.e. `\frac{f}{h}` |
|
cfg : PolyElement |
|
cofactor of `g`, i.e. `\frac{g}{h}` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.modulargcd import modgcd_bivariate |
|
>>> from sympy.polys import ring, ZZ |
|
|
|
>>> R, x, y = ring("x, y", ZZ) |
|
|
|
>>> f = x**2 - y**2 |
|
>>> g = x**2 + 2*x*y + y**2 |
|
|
|
>>> h, cff, cfg = modgcd_bivariate(f, g) |
|
>>> h, cff, cfg |
|
(x + y, x - y, x + y) |
|
|
|
>>> cff * h == f |
|
True |
|
>>> cfg * h == g |
|
True |
|
|
|
>>> f = x**2*y - x**2 - 4*y + 4 |
|
>>> g = x + 2 |
|
|
|
>>> h, cff, cfg = modgcd_bivariate(f, g) |
|
>>> h, cff, cfg |
|
(x + 2, x*y - x - 2*y + 2, 1) |
|
|
|
>>> cff * h == f |
|
True |
|
>>> cfg * h == g |
|
True |
|
|
|
References |
|
========== |
|
|
|
1. [Monagan00]_ |
|
|
|
""" |
|
assert f.ring == g.ring and f.ring.domain.is_ZZ |
|
|
|
result = _trivial_gcd(f, g) |
|
if result is not None: |
|
return result |
|
|
|
ring = f.ring |
|
|
|
cf, f = f.primitive() |
|
cg, g = g.primitive() |
|
ch = ring.domain.gcd(cf, cg) |
|
|
|
xbound, ycontbound = _degree_bound_bivariate(f, g) |
|
if xbound == ycontbound == 0: |
|
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch) |
|
|
|
fswap = _swap(f, 1) |
|
gswap = _swap(g, 1) |
|
degyf = fswap.degree() |
|
degyg = gswap.degree() |
|
|
|
ybound, xcontbound = _degree_bound_bivariate(fswap, gswap) |
|
if ybound == xcontbound == 0: |
|
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch) |
|
|
|
|
|
|
|
gamma1 = ring.domain.gcd(f.LC, g.LC) |
|
gamma2 = ring.domain.gcd(fswap.LC, gswap.LC) |
|
badprimes = gamma1 * gamma2 |
|
m = 1 |
|
p = 1 |
|
|
|
while True: |
|
p = nextprime(p) |
|
while badprimes % p == 0: |
|
p = nextprime(p) |
|
|
|
fp = f.trunc_ground(p) |
|
gp = g.trunc_ground(p) |
|
contfp, fp = _primitive(fp, p) |
|
contgp, gp = _primitive(gp, p) |
|
conthp = _gf_gcd(contfp, contgp, p) |
|
degconthp = conthp.degree() |
|
|
|
if degconthp > ycontbound: |
|
continue |
|
elif degconthp < ycontbound: |
|
m = 1 |
|
ycontbound = degconthp |
|
continue |
|
|
|
|
|
delta = _gf_gcd(_LC(fp), _LC(gp), p) |
|
|
|
degcontfp = contfp.degree() |
|
degcontgp = contgp.degree() |
|
degdelta = delta.degree() |
|
|
|
N = min(degyf - degcontfp, degyg - degcontgp, |
|
ybound - ycontbound + degdelta) + 1 |
|
|
|
if p < N: |
|
continue |
|
|
|
n = 0 |
|
evalpoints = [] |
|
hpeval = [] |
|
unlucky = False |
|
|
|
for a in range(p): |
|
deltaa = delta.evaluate(0, a) |
|
if not deltaa % p: |
|
continue |
|
|
|
fpa = fp.evaluate(1, a).trunc_ground(p) |
|
gpa = gp.evaluate(1, a).trunc_ground(p) |
|
hpa = _gf_gcd(fpa, gpa, p) |
|
deghpa = hpa.degree() |
|
|
|
if deghpa > xbound: |
|
continue |
|
elif deghpa < xbound: |
|
m = 1 |
|
xbound = deghpa |
|
unlucky = True |
|
break |
|
|
|
hpa = hpa.mul_ground(deltaa).trunc_ground(p) |
|
evalpoints.append(a) |
|
hpeval.append(hpa) |
|
n += 1 |
|
|
|
if n == N: |
|
break |
|
|
|
if unlucky: |
|
continue |
|
if n < N: |
|
continue |
|
|
|
hp = _interpolate_multivariate(evalpoints, hpeval, ring, 1, p) |
|
|
|
hp = _primitive(hp, p)[1] |
|
hp = hp * conthp.set_ring(ring) |
|
degyhp = hp.degree(1) |
|
|
|
if degyhp > ybound: |
|
continue |
|
if degyhp < ybound: |
|
m = 1 |
|
ybound = degyhp |
|
continue |
|
|
|
hp = hp.mul_ground(gamma1).trunc_ground(p) |
|
if m == 1: |
|
m = p |
|
hlastm = hp |
|
continue |
|
|
|
hm = _chinese_remainder_reconstruction_multivariate(hp, hlastm, p, m) |
|
m *= p |
|
|
|
if not hm == hlastm: |
|
hlastm = hm |
|
continue |
|
|
|
h = hm.quo_ground(hm.content()) |
|
fquo, frem = f.div(h) |
|
gquo, grem = g.div(h) |
|
if not frem and not grem: |
|
if h.LC < 0: |
|
ch = -ch |
|
h = h.mul_ground(ch) |
|
cff = fquo.mul_ground(cf // ch) |
|
cfg = gquo.mul_ground(cg // ch) |
|
return h, cff, cfg |
|
|
|
|
|
def _modgcd_multivariate_p(f, g, p, degbound, contbound): |
|
r""" |
|
Compute the GCD of two polynomials in |
|
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`. |
|
|
|
The algorithm reduces the problem step by step by evaluating the |
|
polynomials `f` and `g` at `x_{k-1} = a` for suitable |
|
`a \in \mathbb{Z}_p` and then calls itself recursively to compute the GCD |
|
in `\mathbb{Z}_p[x_0, \ldots, x_{k-2}]`. If these recursive calls are |
|
successful for enough evaluation points, the GCD in `k` variables is |
|
interpolated, otherwise the algorithm returns ``None``. Every time a GCD |
|
or a content is computed, their degrees are compared with the bounds. If |
|
a degree greater then the bound is encountered, then the current call |
|
returns ``None`` and a new evaluation point has to be chosen. If at some |
|
point the degree is smaller, the correspondent bound is updated and the |
|
algorithm fails. |
|
|
|
Parameters |
|
========== |
|
|
|
f : PolyElement |
|
multivariate integer polynomial with coefficients in `\mathbb{Z}_p` |
|
g : PolyElement |
|
multivariate integer polynomial with coefficients in `\mathbb{Z}_p` |
|
p : Integer |
|
prime number, modulus of `f` and `g` |
|
degbound : list of Integer objects |
|
``degbound[i]`` is an upper bound for the degree of the GCD of `f` |
|
and `g` in the variable `x_i` |
|
contbound : list of Integer objects |
|
``contbound[i]`` is an upper bound for the degree of the content of |
|
the GCD in `\mathbb{Z}_p[x_i][x_0, \ldots, x_{i-1}]`, |
|
``contbound[0]`` is not used can therefore be chosen |
|
arbitrarily. |
|
|
|
Returns |
|
======= |
|
|
|
h : PolyElement |
|
GCD of the polynomials `f` and `g` or ``None`` |
|
|
|
References |
|
========== |
|
|
|
1. [Monagan00]_ |
|
2. [Brown71]_ |
|
|
|
""" |
|
ring = f.ring |
|
k = ring.ngens |
|
|
|
if k == 1: |
|
h = _gf_gcd(f, g, p).trunc_ground(p) |
|
degh = h.degree() |
|
|
|
if degh > degbound[0]: |
|
return None |
|
if degh < degbound[0]: |
|
degbound[0] = degh |
|
raise ModularGCDFailed |
|
|
|
return h |
|
|
|
degyf = f.degree(k-1) |
|
degyg = g.degree(k-1) |
|
|
|
contf, f = _primitive(f, p) |
|
contg, g = _primitive(g, p) |
|
|
|
conth = _gf_gcd(contf, contg, p) |
|
|
|
degcontf = contf.degree() |
|
degcontg = contg.degree() |
|
degconth = conth.degree() |
|
|
|
if degconth > contbound[k-1]: |
|
return None |
|
if degconth < contbound[k-1]: |
|
contbound[k-1] = degconth |
|
raise ModularGCDFailed |
|
|
|
lcf = _LC(f) |
|
lcg = _LC(g) |
|
|
|
delta = _gf_gcd(lcf, lcg, p) |
|
|
|
evaltest = delta |
|
|
|
for i in range(k-1): |
|
evaltest *= _gf_gcd(_LC(_swap(f, i)), _LC(_swap(g, i)), p) |
|
|
|
degdelta = delta.degree() |
|
|
|
N = min(degyf - degcontf, degyg - degcontg, |
|
degbound[k-1] - contbound[k-1] + degdelta) + 1 |
|
|
|
if p < N: |
|
return None |
|
|
|
n = 0 |
|
d = 0 |
|
evalpoints = [] |
|
heval = [] |
|
points = list(range(p)) |
|
|
|
while points: |
|
a = random.sample(points, 1)[0] |
|
points.remove(a) |
|
|
|
if not evaltest.evaluate(0, a) % p: |
|
continue |
|
|
|
deltaa = delta.evaluate(0, a) % p |
|
|
|
fa = f.evaluate(k-1, a).trunc_ground(p) |
|
ga = g.evaluate(k-1, a).trunc_ground(p) |
|
|
|
|
|
ha = _modgcd_multivariate_p(fa, ga, p, degbound, contbound) |
|
|
|
if ha is None: |
|
d += 1 |
|
if d > n: |
|
return None |
|
continue |
|
|
|
if ha.is_ground: |
|
h = conth.set_ring(ring).trunc_ground(p) |
|
return h |
|
|
|
ha = ha.mul_ground(deltaa).trunc_ground(p) |
|
|
|
evalpoints.append(a) |
|
heval.append(ha) |
|
n += 1 |
|
|
|
if n == N: |
|
h = _interpolate_multivariate(evalpoints, heval, ring, k-1, p) |
|
|
|
h = _primitive(h, p)[1] * conth.set_ring(ring) |
|
degyh = h.degree(k-1) |
|
|
|
if degyh > degbound[k-1]: |
|
return None |
|
if degyh < degbound[k-1]: |
|
degbound[k-1] = degyh |
|
raise ModularGCDFailed |
|
|
|
return h |
|
|
|
return None |
|
|
|
|
|
def modgcd_multivariate(f, g): |
|
r""" |
|
Compute the GCD of two polynomials in `\mathbb{Z}[x_0, \ldots, x_{k-1}]` |
|
using a modular algorithm. |
|
|
|
The algorithm computes the GCD of two multivariate integer polynomials |
|
`f` and `g` by calculating the GCD in |
|
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` for suitable primes `p` and then |
|
reconstructing the coefficients with the Chinese Remainder Theorem. To |
|
compute the multivariate GCD over `\mathbb{Z}_p` the recursive |
|
subroutine :func:`_modgcd_multivariate_p` is used. To verify the result in |
|
`\mathbb{Z}[x_0, \ldots, x_{k-1}]`, trial division is done, but only for |
|
candidates which are very likely the desired GCD. |
|
|
|
Parameters |
|
========== |
|
|
|
f : PolyElement |
|
multivariate integer polynomial |
|
g : PolyElement |
|
multivariate integer polynomial |
|
|
|
Returns |
|
======= |
|
|
|
h : PolyElement |
|
GCD of the polynomials `f` and `g` |
|
cff : PolyElement |
|
cofactor of `f`, i.e. `\frac{f}{h}` |
|
cfg : PolyElement |
|
cofactor of `g`, i.e. `\frac{g}{h}` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.modulargcd import modgcd_multivariate |
|
>>> from sympy.polys import ring, ZZ |
|
|
|
>>> R, x, y = ring("x, y", ZZ) |
|
|
|
>>> f = x**2 - y**2 |
|
>>> g = x**2 + 2*x*y + y**2 |
|
|
|
>>> h, cff, cfg = modgcd_multivariate(f, g) |
|
>>> h, cff, cfg |
|
(x + y, x - y, x + y) |
|
|
|
>>> cff * h == f |
|
True |
|
>>> cfg * h == g |
|
True |
|
|
|
>>> R, x, y, z = ring("x, y, z", ZZ) |
|
|
|
>>> f = x*z**2 - y*z**2 |
|
>>> g = x**2*z + z |
|
|
|
>>> h, cff, cfg = modgcd_multivariate(f, g) |
|
>>> h, cff, cfg |
|
(z, x*z - y*z, x**2 + 1) |
|
|
|
>>> cff * h == f |
|
True |
|
>>> cfg * h == g |
|
True |
|
|
|
References |
|
========== |
|
|
|
1. [Monagan00]_ |
|
2. [Brown71]_ |
|
|
|
See also |
|
======== |
|
|
|
_modgcd_multivariate_p |
|
|
|
""" |
|
assert f.ring == g.ring and f.ring.domain.is_ZZ |
|
|
|
result = _trivial_gcd(f, g) |
|
if result is not None: |
|
return result |
|
|
|
ring = f.ring |
|
k = ring.ngens |
|
|
|
|
|
cf, f = f.primitive() |
|
cg, g = g.primitive() |
|
ch = ring.domain.gcd(cf, cg) |
|
|
|
gamma = ring.domain.gcd(f.LC, g.LC) |
|
|
|
badprimes = ring.domain.one |
|
for i in range(k): |
|
badprimes *= ring.domain.gcd(_swap(f, i).LC, _swap(g, i).LC) |
|
|
|
degbound = [min(fdeg, gdeg) for fdeg, gdeg in zip(f.degrees(), g.degrees())] |
|
contbound = list(degbound) |
|
|
|
m = 1 |
|
p = 1 |
|
|
|
while True: |
|
p = nextprime(p) |
|
while badprimes % p == 0: |
|
p = nextprime(p) |
|
|
|
fp = f.trunc_ground(p) |
|
gp = g.trunc_ground(p) |
|
|
|
try: |
|
|
|
hp = _modgcd_multivariate_p(fp, gp, p, degbound, contbound) |
|
except ModularGCDFailed: |
|
m = 1 |
|
continue |
|
|
|
if hp is None: |
|
continue |
|
|
|
hp = hp.mul_ground(gamma).trunc_ground(p) |
|
if m == 1: |
|
m = p |
|
hlastm = hp |
|
continue |
|
|
|
hm = _chinese_remainder_reconstruction_multivariate(hp, hlastm, p, m) |
|
m *= p |
|
|
|
if not hm == hlastm: |
|
hlastm = hm |
|
continue |
|
|
|
h = hm.primitive()[1] |
|
fquo, frem = f.div(h) |
|
gquo, grem = g.div(h) |
|
if not frem and not grem: |
|
if h.LC < 0: |
|
ch = -ch |
|
h = h.mul_ground(ch) |
|
cff = fquo.mul_ground(cf // ch) |
|
cfg = gquo.mul_ground(cg // ch) |
|
return h, cff, cfg |
|
|
|
|
|
def _gf_div(f, g, p): |
|
r""" |
|
Compute `\frac f g` modulo `p` for two univariate polynomials over |
|
`\mathbb Z_p`. |
|
""" |
|
ring = f.ring |
|
densequo, denserem = gf_div(f.to_dense(), g.to_dense(), p, ring.domain) |
|
return ring.from_dense(densequo), ring.from_dense(denserem) |
|
|
|
|
|
def _rational_function_reconstruction(c, p, m): |
|
r""" |
|
Reconstruct a rational function `\frac a b` in `\mathbb Z_p(t)` from |
|
|
|
.. math:: |
|
|
|
c = \frac a b \; \mathrm{mod} \, m, |
|
|
|
where `c` and `m` are polynomials in `\mathbb Z_p[t]` and `m` has |
|
positive degree. |
|
|
|
The algorithm is based on the Euclidean Algorithm. In general, `m` is |
|
not irreducible, so it is possible that `b` is not invertible modulo |
|
`m`. In that case ``None`` is returned. |
|
|
|
Parameters |
|
========== |
|
|
|
c : PolyElement |
|
univariate polynomial in `\mathbb Z[t]` |
|
p : Integer |
|
prime number |
|
m : PolyElement |
|
modulus, not necessarily irreducible |
|
|
|
Returns |
|
======= |
|
|
|
frac : FracElement |
|
either `\frac a b` in `\mathbb Z(t)` or ``None`` |
|
|
|
References |
|
========== |
|
|
|
1. [Hoeij04]_ |
|
|
|
""" |
|
ring = c.ring |
|
domain = ring.domain |
|
M = m.degree() |
|
N = M // 2 |
|
D = M - N - 1 |
|
|
|
r0, s0 = m, ring.zero |
|
r1, s1 = c, ring.one |
|
|
|
while r1.degree() > N: |
|
quo = _gf_div(r0, r1, p)[0] |
|
r0, r1 = r1, (r0 - quo*r1).trunc_ground(p) |
|
s0, s1 = s1, (s0 - quo*s1).trunc_ground(p) |
|
|
|
a, b = r1, s1 |
|
if b.degree() > D or _gf_gcd(b, m, p) != 1: |
|
return None |
|
|
|
lc = b.LC |
|
if lc != 1: |
|
lcinv = domain.invert(lc, p) |
|
a = a.mul_ground(lcinv).trunc_ground(p) |
|
b = b.mul_ground(lcinv).trunc_ground(p) |
|
|
|
field = ring.to_field() |
|
|
|
return field(a) / field(b) |
|
|
|
|
|
def _rational_reconstruction_func_coeffs(hm, p, m, ring, k): |
|
r""" |
|
Reconstruct every coefficient `c_h` of a polynomial `h` in |
|
`\mathbb Z_p(t_k)[t_1, \ldots, t_{k-1}][x, z]` from the corresponding |
|
coefficient `c_{h_m}` of a polynomial `h_m` in |
|
`\mathbb Z_p[t_1, \ldots, t_k][x, z] \cong \mathbb Z_p[t_k][t_1, \ldots, t_{k-1}][x, z]` |
|
such that |
|
|
|
.. math:: |
|
|
|
c_{h_m} = c_h \; \mathrm{mod} \, m, |
|
|
|
where `m \in \mathbb Z_p[t]`. |
|
|
|
The reconstruction is based on the Euclidean Algorithm. In general, `m` |
|
is not irreducible, so it is possible that this fails for some |
|
coefficient. In that case ``None`` is returned. |
|
|
|
Parameters |
|
========== |
|
|
|
hm : PolyElement |
|
polynomial in `\mathbb Z[t_1, \ldots, t_k][x, z]` |
|
p : Integer |
|
prime number, modulus of `\mathbb Z_p` |
|
m : PolyElement |
|
modulus, polynomial in `\mathbb Z[t]`, not necessarily irreducible |
|
ring : PolyRing |
|
`\mathbb Z(t_k)[t_1, \ldots, t_{k-1}][x, z]`, `h` will be an |
|
element of this ring |
|
k : Integer |
|
index of the parameter `t_k` which will be reconstructed |
|
|
|
Returns |
|
======= |
|
|
|
h : PolyElement |
|
reconstructed polynomial in |
|
`\mathbb Z(t_k)[t_1, \ldots, t_{k-1}][x, z]` or ``None`` |
|
|
|
See also |
|
======== |
|
|
|
_rational_function_reconstruction |
|
|
|
""" |
|
h = ring.zero |
|
|
|
for monom, coeff in hm.iterterms(): |
|
if k == 0: |
|
coeffh = _rational_function_reconstruction(coeff, p, m) |
|
|
|
if not coeffh: |
|
return None |
|
|
|
else: |
|
coeffh = ring.domain.zero |
|
for mon, c in coeff.drop_to_ground(k).iterterms(): |
|
ch = _rational_function_reconstruction(c, p, m) |
|
|
|
if not ch: |
|
return None |
|
|
|
coeffh[mon] = ch |
|
|
|
h[monom] = coeffh |
|
|
|
return h |
|
|
|
|
|
def _gf_gcdex(f, g, p): |
|
r""" |
|
Extended Euclidean Algorithm for two univariate polynomials over |
|
`\mathbb Z_p`. |
|
|
|
Returns polynomials `s, t` and `h`, such that `h` is the GCD of `f` and |
|
`g` and `sf + tg = h \; \mathrm{mod} \, p`. |
|
|
|
""" |
|
ring = f.ring |
|
s, t, h = gf_gcdex(f.to_dense(), g.to_dense(), p, ring.domain) |
|
return ring.from_dense(s), ring.from_dense(t), ring.from_dense(h) |
|
|
|
|
|
def _trunc(f, minpoly, p): |
|
r""" |
|
Compute the reduced representation of a polynomial `f` in |
|
`\mathbb Z_p[z] / (\check m_{\alpha}(z))[x]` |
|
|
|
Parameters |
|
========== |
|
|
|
f : PolyElement |
|
polynomial in `\mathbb Z[x, z]` |
|
minpoly : PolyElement |
|
polynomial `\check m_{\alpha} \in \mathbb Z[z]`, not necessarily |
|
irreducible |
|
p : Integer |
|
prime number, modulus of `\mathbb Z_p` |
|
|
|
Returns |
|
======= |
|
|
|
ftrunc : PolyElement |
|
polynomial in `\mathbb Z[x, z]`, reduced modulo |
|
`\check m_{\alpha}(z)` and `p` |
|
|
|
""" |
|
ring = f.ring |
|
minpoly = minpoly.set_ring(ring) |
|
p_ = ring.ground_new(p) |
|
|
|
return f.trunc_ground(p).rem([minpoly, p_]).trunc_ground(p) |
|
|
|
|
|
def _euclidean_algorithm(f, g, minpoly, p): |
|
r""" |
|
Compute the monic GCD of two univariate polynomials in |
|
`\mathbb{Z}_p[z]/(\check m_{\alpha}(z))[x]` with the Euclidean |
|
Algorithm. |
|
|
|
In general, `\check m_{\alpha}(z)` is not irreducible, so it is possible |
|
that some leading coefficient is not invertible modulo |
|
`\check m_{\alpha}(z)`. In that case ``None`` is returned. |
|
|
|
Parameters |
|
========== |
|
|
|
f, g : PolyElement |
|
polynomials in `\mathbb Z[x, z]` |
|
minpoly : PolyElement |
|
polynomial in `\mathbb Z[z]`, not necessarily irreducible |
|
p : Integer |
|
prime number, modulus of `\mathbb Z_p` |
|
|
|
Returns |
|
======= |
|
|
|
h : PolyElement |
|
GCD of `f` and `g` in `\mathbb Z[z, x]` or ``None``, coefficients |
|
are in `\left[ -\frac{p-1} 2, \frac{p-1} 2 \right]` |
|
|
|
""" |
|
ring = f.ring |
|
|
|
f = _trunc(f, minpoly, p) |
|
g = _trunc(g, minpoly, p) |
|
|
|
while g: |
|
rem = f |
|
deg = g.degree(0) |
|
lcinv, _, gcd = _gf_gcdex(ring.dmp_LC(g), minpoly, p) |
|
|
|
if not gcd == 1: |
|
return None |
|
|
|
while True: |
|
degrem = rem.degree(0) |
|
if degrem < deg: |
|
break |
|
quo = (lcinv * ring.dmp_LC(rem)).set_ring(ring) |
|
rem = _trunc(rem - g.mul_monom((degrem - deg, 0))*quo, minpoly, p) |
|
|
|
f = g |
|
g = rem |
|
|
|
lcfinv = _gf_gcdex(ring.dmp_LC(f), minpoly, p)[0].set_ring(ring) |
|
|
|
return _trunc(f * lcfinv, minpoly, p) |
|
|
|
|
|
def _trial_division(f, h, minpoly, p=None): |
|
r""" |
|
Check if `h` divides `f` in |
|
`\mathbb K[t_1, \ldots, t_k][z]/(m_{\alpha}(z))`, where `\mathbb K` is |
|
either `\mathbb Q` or `\mathbb Z_p`. |
|
|
|
This algorithm is based on pseudo division and does not use any |
|
fractions. By default `\mathbb K` is `\mathbb Q`, if a prime number `p` |
|
is given, `\mathbb Z_p` is chosen instead. |
|
|
|
Parameters |
|
========== |
|
|
|
f, h : PolyElement |
|
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]` |
|
minpoly : PolyElement |
|
polynomial `m_{\alpha}(z)` in `\mathbb Z[t_1, \ldots, t_k][z]` |
|
p : Integer or None |
|
if `p` is given, `\mathbb K` is set to `\mathbb Z_p` instead of |
|
`\mathbb Q`, default is ``None`` |
|
|
|
Returns |
|
======= |
|
|
|
rem : PolyElement |
|
remainder of `\frac f h` |
|
|
|
References |
|
========== |
|
|
|
.. [1] [Hoeij02]_ |
|
|
|
""" |
|
ring = f.ring |
|
|
|
zxring = ring.clone(symbols=(ring.symbols[1], ring.symbols[0])) |
|
|
|
minpoly = minpoly.set_ring(ring) |
|
|
|
rem = f |
|
|
|
degrem = rem.degree() |
|
degh = h.degree() |
|
degm = minpoly.degree(1) |
|
|
|
lch = _LC(h).set_ring(ring) |
|
lcm = minpoly.LC |
|
|
|
while rem and degrem >= degh: |
|
|
|
lcrem = _LC(rem).set_ring(ring) |
|
rem = rem*lch - h.mul_monom((degrem - degh, 0))*lcrem |
|
if p: |
|
rem = rem.trunc_ground(p) |
|
degrem = rem.degree(1) |
|
|
|
while rem and degrem >= degm: |
|
|
|
lcrem = _LC(rem.set_ring(zxring)).set_ring(ring) |
|
rem = rem.mul_ground(lcm) - minpoly.mul_monom((0, degrem - degm))*lcrem |
|
if p: |
|
rem = rem.trunc_ground(p) |
|
degrem = rem.degree(1) |
|
|
|
degrem = rem.degree() |
|
|
|
return rem |
|
|
|
|
|
def _evaluate_ground(f, i, a): |
|
r""" |
|
Evaluate a polynomial `f` at `a` in the `i`-th variable of the ground |
|
domain. |
|
""" |
|
ring = f.ring.clone(domain=f.ring.domain.ring.drop(i)) |
|
fa = ring.zero |
|
|
|
for monom, coeff in f.iterterms(): |
|
fa[monom] = coeff.evaluate(i, a) |
|
|
|
return fa |
|
|
|
|
|
def _func_field_modgcd_p(f, g, minpoly, p): |
|
r""" |
|
Compute the GCD of two polynomials `f` and `g` in |
|
`\mathbb Z_p(t_1, \ldots, t_k)[z]/(\check m_\alpha(z))[x]`. |
|
|
|
The algorithm reduces the problem step by step by evaluating the |
|
polynomials `f` and `g` at `t_k = a` for suitable `a \in \mathbb Z_p` |
|
and then calls itself recursively to compute the GCD in |
|
`\mathbb Z_p(t_1, \ldots, t_{k-1})[z]/(\check m_\alpha(z))[x]`. If these |
|
recursive calls are successful, the GCD over `k` variables is |
|
interpolated, otherwise the algorithm returns ``None``. After |
|
interpolation, Rational Function Reconstruction is used to obtain the |
|
correct coefficients. If this fails, a new evaluation point has to be |
|
chosen, otherwise the desired polynomial is obtained by clearing |
|
denominators. The result is verified with a fraction free trial |
|
division. |
|
|
|
Parameters |
|
========== |
|
|
|
f, g : PolyElement |
|
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]` |
|
minpoly : PolyElement |
|
polynomial in `\mathbb Z[t_1, \ldots, t_k][z]`, not necessarily |
|
irreducible |
|
p : Integer |
|
prime number, modulus of `\mathbb Z_p` |
|
|
|
Returns |
|
======= |
|
|
|
h : PolyElement |
|
primitive associate in `\mathbb Z[t_1, \ldots, t_k][x, z]` of the |
|
GCD of the polynomials `f` and `g` or ``None``, coefficients are |
|
in `\left[ -\frac{p-1} 2, \frac{p-1} 2 \right]` |
|
|
|
References |
|
========== |
|
|
|
1. [Hoeij04]_ |
|
|
|
""" |
|
ring = f.ring |
|
domain = ring.domain |
|
|
|
if isinstance(domain, PolynomialRing): |
|
k = domain.ngens |
|
else: |
|
return _euclidean_algorithm(f, g, minpoly, p) |
|
|
|
if k == 1: |
|
qdomain = domain.ring.to_field() |
|
else: |
|
qdomain = domain.ring.drop_to_ground(k - 1) |
|
qdomain = qdomain.clone(domain=qdomain.domain.ring.to_field()) |
|
|
|
qring = ring.clone(domain=qdomain) |
|
|
|
n = 1 |
|
d = 1 |
|
|
|
|
|
gamma = ring.dmp_LC(f) * ring.dmp_LC(g) |
|
|
|
delta = minpoly.LC |
|
|
|
evalpoints = [] |
|
heval = [] |
|
LMlist = [] |
|
points = list(range(p)) |
|
|
|
while points: |
|
a = random.sample(points, 1)[0] |
|
points.remove(a) |
|
|
|
if k == 1: |
|
test = delta.evaluate(k-1, a) % p == 0 |
|
else: |
|
test = delta.evaluate(k-1, a).trunc_ground(p) == 0 |
|
|
|
if test: |
|
continue |
|
|
|
gammaa = _evaluate_ground(gamma, k-1, a) |
|
minpolya = _evaluate_ground(minpoly, k-1, a) |
|
|
|
if gammaa.rem([minpolya, gammaa.ring(p)]) == 0: |
|
continue |
|
|
|
fa = _evaluate_ground(f, k-1, a) |
|
ga = _evaluate_ground(g, k-1, a) |
|
|
|
|
|
ha = _func_field_modgcd_p(fa, ga, minpolya, p) |
|
|
|
if ha is None: |
|
d += 1 |
|
if d > n: |
|
return None |
|
continue |
|
|
|
if ha == 1: |
|
return ha |
|
|
|
LM = [ha.degree()] + [0]*(k-1) |
|
if k > 1: |
|
for monom, coeff in ha.iterterms(): |
|
if monom[0] == LM[0] and coeff.LM > tuple(LM[1:]): |
|
LM[1:] = coeff.LM |
|
|
|
evalpoints_a = [a] |
|
heval_a = [ha] |
|
if k == 1: |
|
m = qring.domain.get_ring().one |
|
else: |
|
m = qring.domain.domain.get_ring().one |
|
|
|
t = m.ring.gens[0] |
|
|
|
for b, hb, LMhb in zip(evalpoints, heval, LMlist): |
|
if LMhb == LM: |
|
evalpoints_a.append(b) |
|
heval_a.append(hb) |
|
m *= (t - b) |
|
|
|
m = m.trunc_ground(p) |
|
evalpoints.append(a) |
|
heval.append(ha) |
|
LMlist.append(LM) |
|
n += 1 |
|
|
|
|
|
h = _interpolate_multivariate(evalpoints_a, heval_a, ring, k-1, p, ground=True) |
|
|
|
|
|
h = _rational_reconstruction_func_coeffs(h, p, m, qring, k-1) |
|
|
|
if h is None: |
|
continue |
|
|
|
if k == 1: |
|
dom = qring.domain.field |
|
den = dom.ring.one |
|
|
|
for coeff in h.itercoeffs(): |
|
den = dom.ring.from_dense(gf_lcm(den.to_dense(), coeff.denom.to_dense(), |
|
p, dom.domain)) |
|
|
|
else: |
|
dom = qring.domain.domain.field |
|
den = dom.ring.one |
|
|
|
for coeff in h.itercoeffs(): |
|
for c in coeff.itercoeffs(): |
|
den = dom.ring.from_dense(gf_lcm(den.to_dense(), c.denom.to_dense(), |
|
p, dom.domain)) |
|
|
|
den = qring.domain_new(den.trunc_ground(p)) |
|
h = ring(h.mul_ground(den).as_expr()).trunc_ground(p) |
|
|
|
if not _trial_division(f, h, minpoly, p) and not _trial_division(g, h, minpoly, p): |
|
return h |
|
|
|
return None |
|
|
|
|
|
def _integer_rational_reconstruction(c, m, domain): |
|
r""" |
|
Reconstruct a rational number `\frac a b` from |
|
|
|
.. math:: |
|
|
|
c = \frac a b \; \mathrm{mod} \, m, |
|
|
|
where `c` and `m` are integers. |
|
|
|
The algorithm is based on the Euclidean Algorithm. In general, `m` is |
|
not a prime number, so it is possible that `b` is not invertible modulo |
|
`m`. In that case ``None`` is returned. |
|
|
|
Parameters |
|
========== |
|
|
|
c : Integer |
|
`c = \frac a b \; \mathrm{mod} \, m` |
|
m : Integer |
|
modulus, not necessarily prime |
|
domain : IntegerRing |
|
`a, b, c` are elements of ``domain`` |
|
|
|
Returns |
|
======= |
|
|
|
frac : Rational |
|
either `\frac a b` in `\mathbb Q` or ``None`` |
|
|
|
References |
|
========== |
|
|
|
1. [Wang81]_ |
|
|
|
""" |
|
if c < 0: |
|
c += m |
|
|
|
r0, s0 = m, domain.zero |
|
r1, s1 = c, domain.one |
|
|
|
bound = sqrt(m / 2) |
|
|
|
while int(r1) >= bound: |
|
quo = r0 // r1 |
|
r0, r1 = r1, r0 - quo*r1 |
|
s0, s1 = s1, s0 - quo*s1 |
|
|
|
if abs(int(s1)) >= bound: |
|
return None |
|
|
|
if s1 < 0: |
|
a, b = -r1, -s1 |
|
elif s1 > 0: |
|
a, b = r1, s1 |
|
else: |
|
return None |
|
|
|
field = domain.get_field() |
|
|
|
return field(a) / field(b) |
|
|
|
|
|
def _rational_reconstruction_int_coeffs(hm, m, ring): |
|
r""" |
|
Reconstruct every rational coefficient `c_h` of a polynomial `h` in |
|
`\mathbb Q[t_1, \ldots, t_k][x, z]` from the corresponding integer |
|
coefficient `c_{h_m}` of a polynomial `h_m` in |
|
`\mathbb Z[t_1, \ldots, t_k][x, z]` such that |
|
|
|
.. math:: |
|
|
|
c_{h_m} = c_h \; \mathrm{mod} \, m, |
|
|
|
where `m \in \mathbb Z`. |
|
|
|
The reconstruction is based on the Euclidean Algorithm. In general, |
|
`m` is not a prime number, so it is possible that this fails for some |
|
coefficient. In that case ``None`` is returned. |
|
|
|
Parameters |
|
========== |
|
|
|
hm : PolyElement |
|
polynomial in `\mathbb Z[t_1, \ldots, t_k][x, z]` |
|
m : Integer |
|
modulus, not necessarily prime |
|
ring : PolyRing |
|
`\mathbb Q[t_1, \ldots, t_k][x, z]`, `h` will be an element of this |
|
ring |
|
|
|
Returns |
|
======= |
|
|
|
h : PolyElement |
|
reconstructed polynomial in `\mathbb Q[t_1, \ldots, t_k][x, z]` or |
|
``None`` |
|
|
|
See also |
|
======== |
|
|
|
_integer_rational_reconstruction |
|
|
|
""" |
|
h = ring.zero |
|
|
|
if isinstance(ring.domain, PolynomialRing): |
|
reconstruction = _rational_reconstruction_int_coeffs |
|
domain = ring.domain.ring |
|
else: |
|
reconstruction = _integer_rational_reconstruction |
|
domain = hm.ring.domain |
|
|
|
for monom, coeff in hm.iterterms(): |
|
coeffh = reconstruction(coeff, m, domain) |
|
|
|
if not coeffh: |
|
return None |
|
|
|
h[monom] = coeffh |
|
|
|
return h |
|
|
|
|
|
def _func_field_modgcd_m(f, g, minpoly): |
|
r""" |
|
Compute the GCD of two polynomials in |
|
`\mathbb Q(t_1, \ldots, t_k)[z]/(m_{\alpha}(z))[x]` using a modular |
|
algorithm. |
|
|
|
The algorithm computes the GCD of two polynomials `f` and `g` by |
|
calculating the GCD in |
|
`\mathbb Z_p(t_1, \ldots, t_k)[z] / (\check m_{\alpha}(z))[x]` for |
|
suitable primes `p` and the primitive associate `\check m_{\alpha}(z)` |
|
of `m_{\alpha}(z)`. Then the coefficients are reconstructed with the |
|
Chinese Remainder Theorem and Rational Reconstruction. To compute the |
|
GCD over `\mathbb Z_p(t_1, \ldots, t_k)[z] / (\check m_{\alpha})[x]`, |
|
the recursive subroutine ``_func_field_modgcd_p`` is used. To verify the |
|
result in `\mathbb Q(t_1, \ldots, t_k)[z] / (m_{\alpha}(z))[x]`, a |
|
fraction free trial division is used. |
|
|
|
Parameters |
|
========== |
|
|
|
f, g : PolyElement |
|
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]` |
|
minpoly : PolyElement |
|
irreducible polynomial in `\mathbb Z[t_1, \ldots, t_k][z]` |
|
|
|
Returns |
|
======= |
|
|
|
h : PolyElement |
|
the primitive associate in `\mathbb Z[t_1, \ldots, t_k][x, z]` of |
|
the GCD of `f` and `g` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.modulargcd import _func_field_modgcd_m |
|
>>> from sympy.polys import ring, ZZ |
|
|
|
>>> R, x, z = ring('x, z', ZZ) |
|
>>> minpoly = (z**2 - 2).drop(0) |
|
|
|
>>> f = x**2 + 2*x*z + 2 |
|
>>> g = x + z |
|
>>> _func_field_modgcd_m(f, g, minpoly) |
|
x + z |
|
|
|
>>> D, t = ring('t', ZZ) |
|
>>> R, x, z = ring('x, z', D) |
|
>>> minpoly = (z**2-3).drop(0) |
|
|
|
>>> f = x**2 + (t + 1)*x*z + 3*t |
|
>>> g = x*z + 3*t |
|
>>> _func_field_modgcd_m(f, g, minpoly) |
|
x + t*z |
|
|
|
References |
|
========== |
|
|
|
1. [Hoeij04]_ |
|
|
|
See also |
|
======== |
|
|
|
_func_field_modgcd_p |
|
|
|
""" |
|
ring = f.ring |
|
domain = ring.domain |
|
|
|
if isinstance(domain, PolynomialRing): |
|
k = domain.ngens |
|
QQdomain = domain.ring.clone(domain=domain.domain.get_field()) |
|
QQring = ring.clone(domain=QQdomain) |
|
else: |
|
k = 0 |
|
QQring = ring.clone(domain=ring.domain.get_field()) |
|
|
|
cf, f = f.primitive() |
|
cg, g = g.primitive() |
|
|
|
|
|
gamma = ring.dmp_LC(f) * ring.dmp_LC(g) |
|
|
|
delta = minpoly.LC |
|
|
|
p = 1 |
|
primes = [] |
|
hplist = [] |
|
LMlist = [] |
|
|
|
while True: |
|
p = nextprime(p) |
|
|
|
if gamma.trunc_ground(p) == 0: |
|
continue |
|
|
|
if k == 0: |
|
test = (delta % p == 0) |
|
else: |
|
test = (delta.trunc_ground(p) == 0) |
|
|
|
if test: |
|
continue |
|
|
|
fp = f.trunc_ground(p) |
|
gp = g.trunc_ground(p) |
|
minpolyp = minpoly.trunc_ground(p) |
|
|
|
hp = _func_field_modgcd_p(fp, gp, minpolyp, p) |
|
|
|
if hp is None: |
|
continue |
|
|
|
if hp == 1: |
|
return ring.one |
|
|
|
LM = [hp.degree()] + [0]*k |
|
if k > 0: |
|
for monom, coeff in hp.iterterms(): |
|
if monom[0] == LM[0] and coeff.LM > tuple(LM[1:]): |
|
LM[1:] = coeff.LM |
|
|
|
hm = hp |
|
m = p |
|
|
|
for q, hq, LMhq in zip(primes, hplist, LMlist): |
|
if LMhq == LM: |
|
hm = _chinese_remainder_reconstruction_multivariate(hq, hm, q, m) |
|
m *= q |
|
|
|
primes.append(p) |
|
hplist.append(hp) |
|
LMlist.append(LM) |
|
|
|
hm = _rational_reconstruction_int_coeffs(hm, m, QQring) |
|
|
|
if hm is None: |
|
continue |
|
|
|
if k == 0: |
|
h = hm.clear_denoms()[1] |
|
else: |
|
den = domain.domain.one |
|
for coeff in hm.itercoeffs(): |
|
den = domain.domain.lcm(den, coeff.clear_denoms()[0]) |
|
h = hm.mul_ground(den) |
|
|
|
|
|
h = h.set_ring(ring) |
|
h = h.primitive()[1] |
|
|
|
if not (_trial_division(f.mul_ground(cf), h, minpoly) or |
|
_trial_division(g.mul_ground(cg), h, minpoly)): |
|
return h |
|
|
|
|
|
def _to_ZZ_poly(f, ring): |
|
r""" |
|
Compute an associate of a polynomial |
|
`f \in \mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` in |
|
`\mathbb Z[x_1, \ldots, x_{n-1}][z] / (\check m_{\alpha}(z))[x_0]`, |
|
where `\check m_{\alpha}(z) \in \mathbb Z[z]` is the primitive associate |
|
of the minimal polynomial `m_{\alpha}(z)` of `\alpha` over |
|
`\mathbb Q`. |
|
|
|
Parameters |
|
========== |
|
|
|
f : PolyElement |
|
polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` |
|
ring : PolyRing |
|
`\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]` |
|
|
|
Returns |
|
======= |
|
|
|
f_ : PolyElement |
|
associate of `f` in |
|
`\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]` |
|
|
|
""" |
|
f_ = ring.zero |
|
|
|
if isinstance(ring.domain, PolynomialRing): |
|
domain = ring.domain.domain |
|
else: |
|
domain = ring.domain |
|
|
|
den = domain.one |
|
|
|
for coeff in f.itercoeffs(): |
|
for c in coeff.to_list(): |
|
if c: |
|
den = domain.lcm(den, c.denominator) |
|
|
|
for monom, coeff in f.iterterms(): |
|
coeff = coeff.to_list() |
|
m = ring.domain.one |
|
if isinstance(ring.domain, PolynomialRing): |
|
m = m.mul_monom(monom[1:]) |
|
n = len(coeff) |
|
|
|
for i in range(n): |
|
if coeff[i]: |
|
c = domain.convert(coeff[i] * den) * m |
|
|
|
if (monom[0], n-i-1) not in f_: |
|
f_[(monom[0], n-i-1)] = c |
|
else: |
|
f_[(monom[0], n-i-1)] += c |
|
|
|
return f_ |
|
|
|
|
|
def _to_ANP_poly(f, ring): |
|
r""" |
|
Convert a polynomial |
|
`f \in \mathbb Z[x_1, \ldots, x_{n-1}][z]/(\check m_{\alpha}(z))[x_0]` |
|
to a polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`, |
|
where `\check m_{\alpha}(z) \in \mathbb Z[z]` is the primitive associate |
|
of the minimal polynomial `m_{\alpha}(z)` of `\alpha` over |
|
`\mathbb Q`. |
|
|
|
Parameters |
|
========== |
|
|
|
f : PolyElement |
|
polynomial in `\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]` |
|
ring : PolyRing |
|
`\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` |
|
|
|
Returns |
|
======= |
|
|
|
f_ : PolyElement |
|
polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` |
|
|
|
""" |
|
domain = ring.domain |
|
f_ = ring.zero |
|
|
|
if isinstance(f.ring.domain, PolynomialRing): |
|
for monom, coeff in f.iterterms(): |
|
for mon, coef in coeff.iterterms(): |
|
m = (monom[0],) + mon |
|
c = domain([domain.domain(coef)] + [0]*monom[1]) |
|
|
|
if m not in f_: |
|
f_[m] = c |
|
else: |
|
f_[m] += c |
|
|
|
else: |
|
for monom, coeff in f.iterterms(): |
|
m = (monom[0],) |
|
c = domain([domain.domain(coeff)] + [0]*monom[1]) |
|
|
|
if m not in f_: |
|
f_[m] = c |
|
else: |
|
f_[m] += c |
|
|
|
return f_ |
|
|
|
|
|
def _minpoly_from_dense(minpoly, ring): |
|
r""" |
|
Change representation of the minimal polynomial from ``DMP`` to |
|
``PolyElement`` for a given ring. |
|
""" |
|
minpoly_ = ring.zero |
|
|
|
for monom, coeff in minpoly.terms(): |
|
minpoly_[monom] = ring.domain(coeff) |
|
|
|
return minpoly_ |
|
|
|
|
|
def _primitive_in_x0(f): |
|
r""" |
|
Compute the content in `x_0` and the primitive part of a polynomial `f` |
|
in |
|
`\mathbb Q(\alpha)[x_0, x_1, \ldots, x_{n-1}] \cong \mathbb Q(\alpha)[x_1, \ldots, x_{n-1}][x_0]`. |
|
""" |
|
fring = f.ring |
|
ring = fring.drop_to_ground(*range(1, fring.ngens)) |
|
dom = ring.domain.ring |
|
f_ = ring(f.as_expr()) |
|
cont = dom.zero |
|
|
|
for coeff in f_.itercoeffs(): |
|
cont = func_field_modgcd(cont, coeff)[0] |
|
if cont == dom.one: |
|
return cont, f |
|
|
|
return cont, f.quo(cont.set_ring(fring)) |
|
|
|
|
|
|
|
def func_field_modgcd(f, g): |
|
r""" |
|
Compute the GCD of two polynomials `f` and `g` in |
|
`\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` using a modular algorithm. |
|
|
|
The algorithm first computes the primitive associate |
|
`\check m_{\alpha}(z)` of the minimal polynomial `m_{\alpha}` in |
|
`\mathbb{Z}[z]` and the primitive associates of `f` and `g` in |
|
`\mathbb{Z}[x_1, \ldots, x_{n-1}][z]/(\check m_{\alpha})[x_0]`. Then it |
|
computes the GCD in |
|
`\mathbb Q(x_1, \ldots, x_{n-1})[z]/(m_{\alpha}(z))[x_0]`. |
|
This is done by calculating the GCD in |
|
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]` for |
|
suitable primes `p` and then reconstructing the coefficients with the |
|
Chinese Remainder Theorem and Rational Reconstruction. The GCD over |
|
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]` is |
|
computed with a recursive subroutine, which evaluates the polynomials at |
|
`x_{n-1} = a` for suitable evaluation points `a \in \mathbb Z_p` and |
|
then calls itself recursively until the ground domain does no longer |
|
contain any parameters. For |
|
`\mathbb{Z}_p[z]/(\check m_{\alpha}(z))[x_0]` the Euclidean Algorithm is |
|
used. The results of those recursive calls are then interpolated and |
|
Rational Function Reconstruction is used to obtain the correct |
|
coefficients. The results, both in |
|
`\mathbb Q(x_1, \ldots, x_{n-1})[z]/(m_{\alpha}(z))[x_0]` and |
|
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]`, are |
|
verified by a fraction free trial division. |
|
|
|
Apart from the above GCD computation some GCDs in |
|
`\mathbb Q(\alpha)[x_1, \ldots, x_{n-1}]` have to be calculated, |
|
because treating the polynomials as univariate ones can result in |
|
a spurious content of the GCD. For this ``func_field_modgcd`` is |
|
called recursively. |
|
|
|
Parameters |
|
========== |
|
|
|
f, g : PolyElement |
|
polynomials in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` |
|
|
|
Returns |
|
======= |
|
|
|
h : PolyElement |
|
monic GCD of the polynomials `f` and `g` |
|
cff : PolyElement |
|
cofactor of `f`, i.e. `\frac f h` |
|
cfg : PolyElement |
|
cofactor of `g`, i.e. `\frac g h` |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.modulargcd import func_field_modgcd |
|
>>> from sympy.polys import AlgebraicField, QQ, ring |
|
>>> from sympy import sqrt |
|
|
|
>>> A = AlgebraicField(QQ, sqrt(2)) |
|
>>> R, x = ring('x', A) |
|
|
|
>>> f = x**2 - 2 |
|
>>> g = x + sqrt(2) |
|
|
|
>>> h, cff, cfg = func_field_modgcd(f, g) |
|
|
|
>>> h == x + sqrt(2) |
|
True |
|
>>> cff * h == f |
|
True |
|
>>> cfg * h == g |
|
True |
|
|
|
>>> R, x, y = ring('x, y', A) |
|
|
|
>>> f = x**2 + 2*sqrt(2)*x*y + 2*y**2 |
|
>>> g = x + sqrt(2)*y |
|
|
|
>>> h, cff, cfg = func_field_modgcd(f, g) |
|
|
|
>>> h == x + sqrt(2)*y |
|
True |
|
>>> cff * h == f |
|
True |
|
>>> cfg * h == g |
|
True |
|
|
|
>>> f = x + sqrt(2)*y |
|
>>> g = x + y |
|
|
|
>>> h, cff, cfg = func_field_modgcd(f, g) |
|
|
|
>>> h == R.one |
|
True |
|
>>> cff * h == f |
|
True |
|
>>> cfg * h == g |
|
True |
|
|
|
References |
|
========== |
|
|
|
1. [Hoeij04]_ |
|
|
|
""" |
|
ring = f.ring |
|
domain = ring.domain |
|
n = ring.ngens |
|
|
|
assert ring == g.ring and domain.is_Algebraic |
|
|
|
result = _trivial_gcd(f, g) |
|
if result is not None: |
|
return result |
|
|
|
z = Dummy('z') |
|
|
|
ZZring = ring.clone(symbols=ring.symbols + (z,), domain=domain.domain.get_ring()) |
|
|
|
if n == 1: |
|
f_ = _to_ZZ_poly(f, ZZring) |
|
g_ = _to_ZZ_poly(g, ZZring) |
|
minpoly = ZZring.drop(0).from_dense(domain.mod.to_list()) |
|
|
|
h = _func_field_modgcd_m(f_, g_, minpoly) |
|
h = _to_ANP_poly(h, ring) |
|
|
|
else: |
|
|
|
contx0f, f = _primitive_in_x0(f) |
|
contx0g, g = _primitive_in_x0(g) |
|
contx0h = func_field_modgcd(contx0f, contx0g)[0] |
|
|
|
ZZring_ = ZZring.drop_to_ground(*range(1, n)) |
|
|
|
f_ = _to_ZZ_poly(f, ZZring_) |
|
g_ = _to_ZZ_poly(g, ZZring_) |
|
minpoly = _minpoly_from_dense(domain.mod, ZZring_.drop(0)) |
|
|
|
h = _func_field_modgcd_m(f_, g_, minpoly) |
|
h = _to_ANP_poly(h, ring) |
|
|
|
contx0h_, h = _primitive_in_x0(h) |
|
h *= contx0h.set_ring(ring) |
|
f *= contx0f.set_ring(ring) |
|
g *= contx0g.set_ring(ring) |
|
|
|
h = h.quo_ground(h.LC) |
|
|
|
return h, f.quo(h), g.quo(h) |
|
|