|
"""Polynomial factorization routines in characteristic zero. """ |
|
|
|
from sympy.external.gmpy import GROUND_TYPES |
|
|
|
from sympy.core.random import _randint |
|
|
|
from sympy.polys.galoistools import ( |
|
gf_from_int_poly, gf_to_int_poly, |
|
gf_lshift, gf_add_mul, gf_mul, |
|
gf_div, gf_rem, |
|
gf_gcdex, |
|
gf_sqf_p, |
|
gf_factor_sqf, gf_factor) |
|
|
|
from sympy.polys.densebasic import ( |
|
dup_LC, dmp_LC, dmp_ground_LC, |
|
dup_TC, |
|
dup_convert, dmp_convert, |
|
dup_degree, dmp_degree, |
|
dmp_degree_in, dmp_degree_list, |
|
dmp_from_dict, |
|
dmp_zero_p, |
|
dmp_one, |
|
dmp_nest, dmp_raise, |
|
dup_strip, |
|
dmp_ground, |
|
dup_inflate, |
|
dmp_exclude, dmp_include, |
|
dmp_inject, dmp_eject, |
|
dup_terms_gcd, dmp_terms_gcd) |
|
|
|
from sympy.polys.densearith import ( |
|
dup_neg, dmp_neg, |
|
dup_add, dmp_add, |
|
dup_sub, dmp_sub, |
|
dup_mul, dmp_mul, |
|
dup_sqr, |
|
dmp_pow, |
|
dup_div, dmp_div, |
|
dup_quo, dmp_quo, |
|
dmp_expand, |
|
dmp_add_mul, |
|
dup_sub_mul, dmp_sub_mul, |
|
dup_lshift, |
|
dup_max_norm, dmp_max_norm, |
|
dup_l1_norm, |
|
dup_mul_ground, dmp_mul_ground, |
|
dup_quo_ground, dmp_quo_ground) |
|
|
|
from sympy.polys.densetools import ( |
|
dup_clear_denoms, dmp_clear_denoms, |
|
dup_trunc, dmp_ground_trunc, |
|
dup_content, |
|
dup_monic, dmp_ground_monic, |
|
dup_primitive, dmp_ground_primitive, |
|
dmp_eval_tail, |
|
dmp_eval_in, dmp_diff_eval_in, |
|
dup_shift, dmp_shift, dup_mirror) |
|
|
|
from sympy.polys.euclidtools import ( |
|
dmp_primitive, |
|
dup_inner_gcd, dmp_inner_gcd) |
|
|
|
from sympy.polys.sqfreetools import ( |
|
dup_sqf_p, |
|
dup_sqf_norm, dmp_sqf_norm, |
|
dup_sqf_part, dmp_sqf_part, |
|
_dup_check_degrees, _dmp_check_degrees, |
|
) |
|
|
|
from sympy.polys.polyutils import _sort_factors |
|
from sympy.polys.polyconfig import query |
|
|
|
from sympy.polys.polyerrors import ( |
|
ExtraneousFactors, DomainError, CoercionFailed, EvaluationFailed) |
|
|
|
from sympy.utilities import subsets |
|
|
|
from math import ceil as _ceil, log as _log, log2 as _log2 |
|
|
|
|
|
if GROUND_TYPES == 'flint': |
|
from flint import fmpz_poly |
|
else: |
|
fmpz_poly = None |
|
|
|
|
|
def dup_trial_division(f, factors, K): |
|
""" |
|
Determine multiplicities of factors for a univariate polynomial |
|
using trial division. |
|
|
|
An error will be raised if any factor does not divide ``f``. |
|
""" |
|
result = [] |
|
|
|
for factor in factors: |
|
k = 0 |
|
|
|
while True: |
|
q, r = dup_div(f, factor, K) |
|
|
|
if not r: |
|
f, k = q, k + 1 |
|
else: |
|
break |
|
|
|
if k == 0: |
|
raise RuntimeError("trial division failed") |
|
|
|
result.append((factor, k)) |
|
|
|
return _sort_factors(result) |
|
|
|
|
|
def dmp_trial_division(f, factors, u, K): |
|
""" |
|
Determine multiplicities of factors for a multivariate polynomial |
|
using trial division. |
|
|
|
An error will be raised if any factor does not divide ``f``. |
|
""" |
|
result = [] |
|
|
|
for factor in factors: |
|
k = 0 |
|
|
|
while True: |
|
q, r = dmp_div(f, factor, u, K) |
|
|
|
if dmp_zero_p(r, u): |
|
f, k = q, k + 1 |
|
else: |
|
break |
|
|
|
if k == 0: |
|
raise RuntimeError("trial division failed") |
|
|
|
result.append((factor, k)) |
|
|
|
return _sort_factors(result) |
|
|
|
|
|
def dup_zz_mignotte_bound(f, K): |
|
""" |
|
The Knuth-Cohen variant of Mignotte bound for |
|
univariate polynomials in ``K[x]``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys import ring, ZZ |
|
>>> R, x = ring("x", ZZ) |
|
|
|
>>> f = x**3 + 14*x**2 + 56*x + 64 |
|
>>> R.dup_zz_mignotte_bound(f) |
|
152 |
|
|
|
By checking ``factor(f)`` we can see that max coeff is 8 |
|
|
|
Also consider a case that ``f`` is irreducible for example |
|
``f = 2*x**2 + 3*x + 4``. To avoid a bug for these cases, we return the |
|
bound plus the max coefficient of ``f`` |
|
|
|
>>> f = 2*x**2 + 3*x + 4 |
|
>>> R.dup_zz_mignotte_bound(f) |
|
6 |
|
|
|
Lastly, to see the difference between the new and the old Mignotte bound |
|
consider the irreducible polynomial: |
|
|
|
>>> f = 87*x**7 + 4*x**6 + 80*x**5 + 17*x**4 + 9*x**3 + 12*x**2 + 49*x + 26 |
|
>>> R.dup_zz_mignotte_bound(f) |
|
744 |
|
|
|
The new Mignotte bound is 744 whereas the old one (SymPy 1.5.1) is 1937664. |
|
|
|
|
|
References |
|
========== |
|
|
|
..[1] [Abbott13]_ |
|
|
|
""" |
|
from sympy.functions.combinatorial.factorials import binomial |
|
d = dup_degree(f) |
|
delta = _ceil(d / 2) |
|
delta2 = _ceil(delta / 2) |
|
|
|
|
|
eucl_norm = K.sqrt( sum( cf**2 for cf in f ) ) |
|
|
|
|
|
t1 = binomial(delta - 1, delta2) |
|
t2 = binomial(delta - 1, delta2 - 1) |
|
|
|
lc = K.abs(dup_LC(f, K)) |
|
bound = t1 * eucl_norm + t2 * lc |
|
bound += dup_max_norm(f, K) |
|
bound = _ceil(bound / 2) * 2 |
|
|
|
return bound |
|
|
|
def dmp_zz_mignotte_bound(f, u, K): |
|
"""Mignotte bound for multivariate polynomials in `K[X]`. """ |
|
a = dmp_max_norm(f, u, K) |
|
b = abs(dmp_ground_LC(f, u, K)) |
|
n = sum(dmp_degree_list(f, u)) |
|
|
|
return K.sqrt(K(n + 1))*2**n*a*b |
|
|
|
|
|
def dup_zz_hensel_step(m, f, g, h, s, t, K): |
|
""" |
|
One step in Hensel lifting in `Z[x]`. |
|
|
|
Given positive integer `m` and `Z[x]` polynomials `f`, `g`, `h`, `s` |
|
and `t` such that:: |
|
|
|
f = g*h (mod m) |
|
s*g + t*h = 1 (mod m) |
|
|
|
lc(f) is not a zero divisor (mod m) |
|
lc(h) = 1 |
|
|
|
deg(f) = deg(g) + deg(h) |
|
deg(s) < deg(h) |
|
deg(t) < deg(g) |
|
|
|
returns polynomials `G`, `H`, `S` and `T`, such that:: |
|
|
|
f = G*H (mod m**2) |
|
S*G + T*H = 1 (mod m**2) |
|
|
|
References |
|
========== |
|
|
|
.. [1] [Gathen99]_ |
|
|
|
""" |
|
M = m**2 |
|
|
|
e = dup_sub_mul(f, g, h, K) |
|
e = dup_trunc(e, M, K) |
|
|
|
q, r = dup_div(dup_mul(s, e, K), h, K) |
|
|
|
q = dup_trunc(q, M, K) |
|
r = dup_trunc(r, M, K) |
|
|
|
u = dup_add(dup_mul(t, e, K), dup_mul(q, g, K), K) |
|
G = dup_trunc(dup_add(g, u, K), M, K) |
|
H = dup_trunc(dup_add(h, r, K), M, K) |
|
|
|
u = dup_add(dup_mul(s, G, K), dup_mul(t, H, K), K) |
|
b = dup_trunc(dup_sub(u, [K.one], K), M, K) |
|
|
|
c, d = dup_div(dup_mul(s, b, K), H, K) |
|
|
|
c = dup_trunc(c, M, K) |
|
d = dup_trunc(d, M, K) |
|
|
|
u = dup_add(dup_mul(t, b, K), dup_mul(c, G, K), K) |
|
S = dup_trunc(dup_sub(s, d, K), M, K) |
|
T = dup_trunc(dup_sub(t, u, K), M, K) |
|
|
|
return G, H, S, T |
|
|
|
|
|
def dup_zz_hensel_lift(p, f, f_list, l, K): |
|
r""" |
|
Multifactor Hensel lifting in `Z[x]`. |
|
|
|
Given a prime `p`, polynomial `f` over `Z[x]` such that `lc(f)` |
|
is a unit modulo `p`, monic pair-wise coprime polynomials `f_i` |
|
over `Z[x]` satisfying:: |
|
|
|
f = lc(f) f_1 ... f_r (mod p) |
|
|
|
and a positive integer `l`, returns a list of monic polynomials |
|
`F_1,\ F_2,\ \dots,\ F_r` satisfying:: |
|
|
|
f = lc(f) F_1 ... F_r (mod p**l) |
|
|
|
F_i = f_i (mod p), i = 1..r |
|
|
|
References |
|
========== |
|
|
|
.. [1] [Gathen99]_ |
|
|
|
""" |
|
r = len(f_list) |
|
lc = dup_LC(f, K) |
|
|
|
if r == 1: |
|
F = dup_mul_ground(f, K.gcdex(lc, p**l)[0], K) |
|
return [ dup_trunc(F, p**l, K) ] |
|
|
|
m = p |
|
k = r // 2 |
|
d = int(_ceil(_log2(l))) |
|
|
|
g = gf_from_int_poly([lc], p) |
|
|
|
for f_i in f_list[:k]: |
|
g = gf_mul(g, gf_from_int_poly(f_i, p), p, K) |
|
|
|
h = gf_from_int_poly(f_list[k], p) |
|
|
|
for f_i in f_list[k + 1:]: |
|
h = gf_mul(h, gf_from_int_poly(f_i, p), p, K) |
|
|
|
s, t, _ = gf_gcdex(g, h, p, K) |
|
|
|
g = gf_to_int_poly(g, p) |
|
h = gf_to_int_poly(h, p) |
|
s = gf_to_int_poly(s, p) |
|
t = gf_to_int_poly(t, p) |
|
|
|
for _ in range(1, d + 1): |
|
(g, h, s, t), m = dup_zz_hensel_step(m, f, g, h, s, t, K), m**2 |
|
|
|
return dup_zz_hensel_lift(p, g, f_list[:k], l, K) \ |
|
+ dup_zz_hensel_lift(p, h, f_list[k:], l, K) |
|
|
|
def _test_pl(fc, q, pl): |
|
if q > pl // 2: |
|
q = q - pl |
|
if not q: |
|
return True |
|
return fc % q == 0 |
|
|
|
def dup_zz_zassenhaus(f, K): |
|
"""Factor primitive square-free polynomials in `Z[x]`. """ |
|
n = dup_degree(f) |
|
|
|
if n == 1: |
|
return [f] |
|
|
|
from sympy.ntheory import isprime |
|
|
|
fc = f[-1] |
|
A = dup_max_norm(f, K) |
|
b = dup_LC(f, K) |
|
B = int(abs(K.sqrt(K(n + 1))*2**n*A*b)) |
|
C = int((n + 1)**(2*n)*A**(2*n - 1)) |
|
gamma = int(_ceil(2*_log2(C))) |
|
bound = int(2*gamma*_log(gamma)) |
|
a = [] |
|
|
|
|
|
|
|
for px in range(3, bound + 1): |
|
if not isprime(px) or b % px == 0: |
|
continue |
|
|
|
px = K.convert(px) |
|
|
|
F = gf_from_int_poly(f, px) |
|
|
|
if not gf_sqf_p(F, px, K): |
|
continue |
|
fsqfx = gf_factor_sqf(F, px, K)[1] |
|
a.append((px, fsqfx)) |
|
if len(fsqfx) < 15 or len(a) > 4: |
|
break |
|
p, fsqf = min(a, key=lambda x: len(x[1])) |
|
|
|
l = int(_ceil(_log(2*B + 1, p))) |
|
|
|
modular = [gf_to_int_poly(ff, p) for ff in fsqf] |
|
|
|
g = dup_zz_hensel_lift(p, f, modular, l, K) |
|
|
|
sorted_T = range(len(g)) |
|
T = set(sorted_T) |
|
factors, s = [], 1 |
|
pl = p**l |
|
|
|
while 2*s <= len(T): |
|
for S in subsets(sorted_T, s): |
|
|
|
|
|
|
|
|
|
if b == 1: |
|
q = 1 |
|
for i in S: |
|
q = q*g[i][-1] |
|
q = q % pl |
|
if not _test_pl(fc, q, pl): |
|
continue |
|
else: |
|
G = [b] |
|
for i in S: |
|
G = dup_mul(G, g[i], K) |
|
G = dup_trunc(G, pl, K) |
|
G = dup_primitive(G, K)[1] |
|
q = G[-1] |
|
if q and fc % q != 0: |
|
continue |
|
|
|
H = [b] |
|
S = set(S) |
|
T_S = T - S |
|
|
|
if b == 1: |
|
G = [b] |
|
for i in S: |
|
G = dup_mul(G, g[i], K) |
|
G = dup_trunc(G, pl, K) |
|
|
|
for i in T_S: |
|
H = dup_mul(H, g[i], K) |
|
|
|
H = dup_trunc(H, pl, K) |
|
|
|
G_norm = dup_l1_norm(G, K) |
|
H_norm = dup_l1_norm(H, K) |
|
|
|
if G_norm*H_norm <= B: |
|
T = T_S |
|
sorted_T = [i for i in sorted_T if i not in S] |
|
|
|
G = dup_primitive(G, K)[1] |
|
f = dup_primitive(H, K)[1] |
|
|
|
factors.append(G) |
|
b = dup_LC(f, K) |
|
|
|
break |
|
else: |
|
s += 1 |
|
|
|
return factors + [f] |
|
|
|
|
|
def dup_zz_irreducible_p(f, K): |
|
"""Test irreducibility using Eisenstein's criterion. """ |
|
lc = dup_LC(f, K) |
|
tc = dup_TC(f, K) |
|
|
|
e_fc = dup_content(f[1:], K) |
|
|
|
if e_fc: |
|
from sympy.ntheory import factorint |
|
e_ff = factorint(int(e_fc)) |
|
|
|
for p in e_ff.keys(): |
|
if (lc % p) and (tc % p**2): |
|
return True |
|
|
|
|
|
def dup_cyclotomic_p(f, K, irreducible=False): |
|
""" |
|
Efficiently test if ``f`` is a cyclotomic polynomial. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys import ring, ZZ |
|
>>> R, x = ring("x", ZZ) |
|
|
|
>>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1 |
|
>>> R.dup_cyclotomic_p(f) |
|
False |
|
|
|
>>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1 |
|
>>> R.dup_cyclotomic_p(g) |
|
True |
|
|
|
References |
|
========== |
|
|
|
Bradford, Russell J., and James H. Davenport. "Effective tests for |
|
cyclotomic polynomials." In International Symposium on Symbolic and |
|
Algebraic Computation, pp. 244-251. Springer, Berlin, Heidelberg, 1988. |
|
|
|
""" |
|
if K.is_QQ: |
|
try: |
|
K0, K = K, K.get_ring() |
|
f = dup_convert(f, K0, K) |
|
except CoercionFailed: |
|
return False |
|
elif not K.is_ZZ: |
|
return False |
|
|
|
lc = dup_LC(f, K) |
|
tc = dup_TC(f, K) |
|
|
|
if lc != 1 or (tc != -1 and tc != 1): |
|
return False |
|
|
|
if not irreducible: |
|
coeff, factors = dup_factor_list(f, K) |
|
|
|
if coeff != K.one or factors != [(f, 1)]: |
|
return False |
|
|
|
n = dup_degree(f) |
|
g, h = [], [] |
|
|
|
for i in range(n, -1, -2): |
|
g.insert(0, f[i]) |
|
|
|
for i in range(n - 1, -1, -2): |
|
h.insert(0, f[i]) |
|
|
|
g = dup_sqr(dup_strip(g), K) |
|
h = dup_sqr(dup_strip(h), K) |
|
|
|
F = dup_sub(g, dup_lshift(h, 1, K), K) |
|
|
|
if K.is_negative(dup_LC(F, K)): |
|
F = dup_neg(F, K) |
|
|
|
if F == f: |
|
return True |
|
|
|
g = dup_mirror(f, K) |
|
|
|
if K.is_negative(dup_LC(g, K)): |
|
g = dup_neg(g, K) |
|
|
|
if F == g and dup_cyclotomic_p(g, K): |
|
return True |
|
|
|
G = dup_sqf_part(F, K) |
|
|
|
if dup_sqr(G, K) == F and dup_cyclotomic_p(G, K): |
|
return True |
|
|
|
return False |
|
|
|
|
|
def dup_zz_cyclotomic_poly(n, K): |
|
"""Efficiently generate n-th cyclotomic polynomial. """ |
|
from sympy.ntheory import factorint |
|
h = [K.one, -K.one] |
|
|
|
for p, k in factorint(n).items(): |
|
h = dup_quo(dup_inflate(h, p, K), h, K) |
|
h = dup_inflate(h, p**(k - 1), K) |
|
|
|
return h |
|
|
|
|
|
def _dup_cyclotomic_decompose(n, K): |
|
from sympy.ntheory import factorint |
|
|
|
H = [[K.one, -K.one]] |
|
|
|
for p, k in factorint(n).items(): |
|
Q = [ dup_quo(dup_inflate(h, p, K), h, K) for h in H ] |
|
H.extend(Q) |
|
|
|
for i in range(1, k): |
|
Q = [ dup_inflate(q, p, K) for q in Q ] |
|
H.extend(Q) |
|
|
|
return H |
|
|
|
|
|
def dup_zz_cyclotomic_factor(f, K): |
|
""" |
|
Efficiently factor polynomials `x**n - 1` and `x**n + 1` in `Z[x]`. |
|
|
|
Given a univariate polynomial `f` in `Z[x]` returns a list of factors |
|
of `f`, provided that `f` is in the form `x**n - 1` or `x**n + 1` for |
|
`n >= 1`. Otherwise returns None. |
|
|
|
Factorization is performed using cyclotomic decomposition of `f`, |
|
which makes this method much faster that any other direct factorization |
|
approach (e.g. Zassenhaus's). |
|
|
|
References |
|
========== |
|
|
|
.. [1] [Weisstein09]_ |
|
|
|
""" |
|
lc_f, tc_f = dup_LC(f, K), dup_TC(f, K) |
|
|
|
if dup_degree(f) <= 0: |
|
return None |
|
|
|
if lc_f != 1 or tc_f not in [-1, 1]: |
|
return None |
|
|
|
if any(bool(cf) for cf in f[1:-1]): |
|
return None |
|
|
|
n = dup_degree(f) |
|
F = _dup_cyclotomic_decompose(n, K) |
|
|
|
if not K.is_one(tc_f): |
|
return F |
|
else: |
|
H = [] |
|
|
|
for h in _dup_cyclotomic_decompose(2*n, K): |
|
if h not in F: |
|
H.append(h) |
|
|
|
return H |
|
|
|
|
|
def dup_zz_factor_sqf(f, K): |
|
"""Factor square-free (non-primitive) polynomials in `Z[x]`. """ |
|
cont, g = dup_primitive(f, K) |
|
|
|
n = dup_degree(g) |
|
|
|
if dup_LC(g, K) < 0: |
|
cont, g = -cont, dup_neg(g, K) |
|
|
|
if n <= 0: |
|
return cont, [] |
|
elif n == 1: |
|
return cont, [g] |
|
|
|
if query('USE_IRREDUCIBLE_IN_FACTOR'): |
|
if dup_zz_irreducible_p(g, K): |
|
return cont, [g] |
|
|
|
factors = None |
|
|
|
if query('USE_CYCLOTOMIC_FACTOR'): |
|
factors = dup_zz_cyclotomic_factor(g, K) |
|
|
|
if factors is None: |
|
factors = dup_zz_zassenhaus(g, K) |
|
|
|
return cont, _sort_factors(factors, multiple=False) |
|
|
|
|
|
def dup_zz_factor(f, K): |
|
""" |
|
Factor (non square-free) polynomials in `Z[x]`. |
|
|
|
Given a univariate polynomial `f` in `Z[x]` computes its complete |
|
factorization `f_1, ..., f_n` into irreducibles over integers:: |
|
|
|
f = content(f) f_1**k_1 ... f_n**k_n |
|
|
|
The factorization is computed by reducing the input polynomial |
|
into a primitive square-free polynomial and factoring it using |
|
Zassenhaus algorithm. Trial division is used to recover the |
|
multiplicities of factors. |
|
|
|
The result is returned as a tuple consisting of:: |
|
|
|
(content(f), [(f_1, k_1), ..., (f_n, k_n)) |
|
|
|
Examples |
|
======== |
|
|
|
Consider the polynomial `f = 2*x**4 - 2`:: |
|
|
|
>>> from sympy.polys import ring, ZZ |
|
>>> R, x = ring("x", ZZ) |
|
|
|
>>> R.dup_zz_factor(2*x**4 - 2) |
|
(2, [(x - 1, 1), (x + 1, 1), (x**2 + 1, 1)]) |
|
|
|
In result we got the following factorization:: |
|
|
|
f = 2 (x - 1) (x + 1) (x**2 + 1) |
|
|
|
Note that this is a complete factorization over integers, |
|
however over Gaussian integers we can factor the last term. |
|
|
|
By default, polynomials `x**n - 1` and `x**n + 1` are factored |
|
using cyclotomic decomposition to speedup computations. To |
|
disable this behaviour set cyclotomic=False. |
|
|
|
References |
|
========== |
|
|
|
.. [1] [Gathen99]_ |
|
|
|
""" |
|
if GROUND_TYPES == 'flint': |
|
f_flint = fmpz_poly(f[::-1]) |
|
cont, factors = f_flint.factor() |
|
factors = [(fac.coeffs()[::-1], exp) for fac, exp in factors] |
|
return cont, _sort_factors(factors) |
|
|
|
cont, g = dup_primitive(f, K) |
|
|
|
n = dup_degree(g) |
|
|
|
if dup_LC(g, K) < 0: |
|
cont, g = -cont, dup_neg(g, K) |
|
|
|
if n <= 0: |
|
return cont, [] |
|
elif n == 1: |
|
return cont, [(g, 1)] |
|
|
|
if query('USE_IRREDUCIBLE_IN_FACTOR'): |
|
if dup_zz_irreducible_p(g, K): |
|
return cont, [(g, 1)] |
|
|
|
g = dup_sqf_part(g, K) |
|
H = None |
|
|
|
if query('USE_CYCLOTOMIC_FACTOR'): |
|
H = dup_zz_cyclotomic_factor(g, K) |
|
|
|
if H is None: |
|
H = dup_zz_zassenhaus(g, K) |
|
|
|
factors = dup_trial_division(f, H, K) |
|
|
|
_dup_check_degrees(f, factors) |
|
|
|
return cont, factors |
|
|
|
|
|
def dmp_zz_wang_non_divisors(E, cs, ct, K): |
|
"""Wang/EEZ: Compute a set of valid divisors. """ |
|
result = [ cs*ct ] |
|
|
|
for q in E: |
|
q = abs(q) |
|
|
|
for r in reversed(result): |
|
while r != 1: |
|
r = K.gcd(r, q) |
|
q = q // r |
|
|
|
if K.is_one(q): |
|
return None |
|
|
|
result.append(q) |
|
|
|
return result[1:] |
|
|
|
|
|
def dmp_zz_wang_test_points(f, T, ct, A, u, K): |
|
"""Wang/EEZ: Test evaluation points for suitability. """ |
|
if not dmp_eval_tail(dmp_LC(f, K), A, u - 1, K): |
|
raise EvaluationFailed('no luck') |
|
|
|
g = dmp_eval_tail(f, A, u, K) |
|
|
|
if not dup_sqf_p(g, K): |
|
raise EvaluationFailed('no luck') |
|
|
|
c, h = dup_primitive(g, K) |
|
|
|
if K.is_negative(dup_LC(h, K)): |
|
c, h = -c, dup_neg(h, K) |
|
|
|
v = u - 1 |
|
|
|
E = [ dmp_eval_tail(t, A, v, K) for t, _ in T ] |
|
D = dmp_zz_wang_non_divisors(E, c, ct, K) |
|
|
|
if D is not None: |
|
return c, h, E |
|
else: |
|
raise EvaluationFailed('no luck') |
|
|
|
|
|
def dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K): |
|
"""Wang/EEZ: Compute correct leading coefficients. """ |
|
C, J, v = [], [0]*len(E), u - 1 |
|
|
|
for h in H: |
|
c = dmp_one(v, K) |
|
d = dup_LC(h, K)*cs |
|
|
|
for i in reversed(range(len(E))): |
|
k, e, (t, _) = 0, E[i], T[i] |
|
|
|
while not (d % e): |
|
d, k = d//e, k + 1 |
|
|
|
if k != 0: |
|
c, J[i] = dmp_mul(c, dmp_pow(t, k, v, K), v, K), 1 |
|
|
|
C.append(c) |
|
|
|
if not all(J): |
|
raise ExtraneousFactors |
|
|
|
CC, HH = [], [] |
|
|
|
for c, h in zip(C, H): |
|
d = dmp_eval_tail(c, A, v, K) |
|
lc = dup_LC(h, K) |
|
|
|
if K.is_one(cs): |
|
cc = lc//d |
|
else: |
|
g = K.gcd(lc, d) |
|
d, cc = d//g, lc//g |
|
h, cs = dup_mul_ground(h, d, K), cs//d |
|
|
|
c = dmp_mul_ground(c, cc, v, K) |
|
|
|
CC.append(c) |
|
HH.append(h) |
|
|
|
if K.is_one(cs): |
|
return f, HH, CC |
|
|
|
CCC, HHH = [], [] |
|
|
|
for c, h in zip(CC, HH): |
|
CCC.append(dmp_mul_ground(c, cs, v, K)) |
|
HHH.append(dmp_mul_ground(h, cs, 0, K)) |
|
|
|
f = dmp_mul_ground(f, cs**(len(H) - 1), u, K) |
|
|
|
return f, HHH, CCC |
|
|
|
|
|
def dup_zz_diophantine(F, m, p, K): |
|
"""Wang/EEZ: Solve univariate Diophantine equations. """ |
|
if len(F) == 2: |
|
a, b = F |
|
|
|
f = gf_from_int_poly(a, p) |
|
g = gf_from_int_poly(b, p) |
|
|
|
s, t, G = gf_gcdex(g, f, p, K) |
|
|
|
s = gf_lshift(s, m, K) |
|
t = gf_lshift(t, m, K) |
|
|
|
q, s = gf_div(s, f, p, K) |
|
|
|
t = gf_add_mul(t, q, g, p, K) |
|
|
|
s = gf_to_int_poly(s, p) |
|
t = gf_to_int_poly(t, p) |
|
|
|
result = [s, t] |
|
else: |
|
G = [F[-1]] |
|
|
|
for f in reversed(F[1:-1]): |
|
G.insert(0, dup_mul(f, G[0], K)) |
|
|
|
S, T = [], [[1]] |
|
|
|
for f, g in zip(F, G): |
|
t, s = dmp_zz_diophantine([g, f], T[-1], [], 0, p, 1, K) |
|
T.append(t) |
|
S.append(s) |
|
|
|
result, S = [], S + [T[-1]] |
|
|
|
for s, f in zip(S, F): |
|
s = gf_from_int_poly(s, p) |
|
f = gf_from_int_poly(f, p) |
|
|
|
r = gf_rem(gf_lshift(s, m, K), f, p, K) |
|
s = gf_to_int_poly(r, p) |
|
|
|
result.append(s) |
|
|
|
return result |
|
|
|
|
|
def dmp_zz_diophantine(F, c, A, d, p, u, K): |
|
"""Wang/EEZ: Solve multivariate Diophantine equations. """ |
|
if not A: |
|
S = [ [] for _ in F ] |
|
n = dup_degree(c) |
|
|
|
for i, coeff in enumerate(c): |
|
if not coeff: |
|
continue |
|
|
|
T = dup_zz_diophantine(F, n - i, p, K) |
|
|
|
for j, (s, t) in enumerate(zip(S, T)): |
|
t = dup_mul_ground(t, coeff, K) |
|
S[j] = dup_trunc(dup_add(s, t, K), p, K) |
|
else: |
|
n = len(A) |
|
e = dmp_expand(F, u, K) |
|
|
|
a, A = A[-1], A[:-1] |
|
B, G = [], [] |
|
|
|
for f in F: |
|
B.append(dmp_quo(e, f, u, K)) |
|
G.append(dmp_eval_in(f, a, n, u, K)) |
|
|
|
C = dmp_eval_in(c, a, n, u, K) |
|
|
|
v = u - 1 |
|
|
|
S = dmp_zz_diophantine(G, C, A, d, p, v, K) |
|
S = [ dmp_raise(s, 1, v, K) for s in S ] |
|
|
|
for s, b in zip(S, B): |
|
c = dmp_sub_mul(c, s, b, u, K) |
|
|
|
c = dmp_ground_trunc(c, p, u, K) |
|
|
|
m = dmp_nest([K.one, -a], n, K) |
|
M = dmp_one(n, K) |
|
|
|
for k in range(0, d): |
|
if dmp_zero_p(c, u): |
|
break |
|
|
|
M = dmp_mul(M, m, u, K) |
|
C = dmp_diff_eval_in(c, k + 1, a, n, u, K) |
|
|
|
if not dmp_zero_p(C, v): |
|
C = dmp_quo_ground(C, K.factorial(K(k) + 1), v, K) |
|
T = dmp_zz_diophantine(G, C, A, d, p, v, K) |
|
|
|
for i, t in enumerate(T): |
|
T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K) |
|
|
|
for i, (s, t) in enumerate(zip(S, T)): |
|
S[i] = dmp_add(s, t, u, K) |
|
|
|
for t, b in zip(T, B): |
|
c = dmp_sub_mul(c, t, b, u, K) |
|
|
|
c = dmp_ground_trunc(c, p, u, K) |
|
|
|
S = [ dmp_ground_trunc(s, p, u, K) for s in S ] |
|
|
|
return S |
|
|
|
|
|
def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K): |
|
"""Wang/EEZ: Parallel Hensel lifting algorithm. """ |
|
S, n, v = [f], len(A), u - 1 |
|
|
|
H = list(H) |
|
|
|
for i, a in enumerate(reversed(A[1:])): |
|
s = dmp_eval_in(S[0], a, n - i, u - i, K) |
|
S.insert(0, dmp_ground_trunc(s, p, v - i, K)) |
|
|
|
d = max(dmp_degree_list(f, u)[1:]) |
|
|
|
for j, s, a in zip(range(2, n + 2), S, A): |
|
G, w = list(H), j - 1 |
|
|
|
I, J = A[:j - 2], A[j - 1:] |
|
|
|
for i, (h, lc) in enumerate(zip(H, LC)): |
|
lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w - 1, K) |
|
H[i] = [lc] + dmp_raise(h[1:], 1, w - 1, K) |
|
|
|
m = dmp_nest([K.one, -a], w, K) |
|
M = dmp_one(w, K) |
|
|
|
c = dmp_sub(s, dmp_expand(H, w, K), w, K) |
|
|
|
dj = dmp_degree_in(s, w, w) |
|
|
|
for k in range(0, dj): |
|
if dmp_zero_p(c, w): |
|
break |
|
|
|
M = dmp_mul(M, m, w, K) |
|
C = dmp_diff_eval_in(c, k + 1, a, w, w, K) |
|
|
|
if not dmp_zero_p(C, w - 1): |
|
C = dmp_quo_ground(C, K.factorial(K(k) + 1), w - 1, K) |
|
T = dmp_zz_diophantine(G, C, I, d, p, w - 1, K) |
|
|
|
for i, (h, t) in enumerate(zip(H, T)): |
|
h = dmp_add_mul(h, dmp_raise(t, 1, w - 1, K), M, w, K) |
|
H[i] = dmp_ground_trunc(h, p, w, K) |
|
|
|
h = dmp_sub(s, dmp_expand(H, w, K), w, K) |
|
c = dmp_ground_trunc(h, p, w, K) |
|
|
|
if dmp_expand(H, u, K) != f: |
|
raise ExtraneousFactors |
|
else: |
|
return H |
|
|
|
|
|
def dmp_zz_wang(f, u, K, mod=None, seed=None): |
|
r""" |
|
Factor primitive square-free polynomials in `Z[X]`. |
|
|
|
Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which is |
|
primitive and square-free in `x_1`, computes factorization of `f` into |
|
irreducibles over integers. |
|
|
|
The procedure is based on Wang's Enhanced Extended Zassenhaus |
|
algorithm. The algorithm works by viewing `f` as a univariate polynomial |
|
in `Z[x_2,...,x_n][x_1]`, for which an evaluation mapping is computed:: |
|
|
|
x_2 -> a_2, ..., x_n -> a_n |
|
|
|
where `a_i`, for `i = 2, \dots, n`, are carefully chosen integers. The |
|
mapping is used to transform `f` into a univariate polynomial in `Z[x_1]`, |
|
which can be factored efficiently using Zassenhaus algorithm. The last |
|
step is to lift univariate factors to obtain true multivariate |
|
factors. For this purpose a parallel Hensel lifting procedure is used. |
|
|
|
The parameter ``seed`` is passed to _randint and can be used to seed randint |
|
(when an integer) or (for testing purposes) can be a sequence of numbers. |
|
|
|
References |
|
========== |
|
|
|
.. [1] [Wang78]_ |
|
.. [2] [Geddes92]_ |
|
|
|
""" |
|
from sympy.ntheory import nextprime |
|
|
|
randint = _randint(seed) |
|
|
|
ct, T = dmp_zz_factor(dmp_LC(f, K), u - 1, K) |
|
|
|
b = dmp_zz_mignotte_bound(f, u, K) |
|
p = K(nextprime(b)) |
|
|
|
if mod is None: |
|
if u == 1: |
|
mod = 2 |
|
else: |
|
mod = 1 |
|
|
|
history, configs, A, r = set(), [], [K.zero]*u, None |
|
|
|
try: |
|
cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K) |
|
|
|
_, H = dup_zz_factor_sqf(s, K) |
|
|
|
r = len(H) |
|
|
|
if r == 1: |
|
return [f] |
|
|
|
configs = [(s, cs, E, H, A)] |
|
except EvaluationFailed: |
|
pass |
|
|
|
eez_num_configs = query('EEZ_NUMBER_OF_CONFIGS') |
|
eez_num_tries = query('EEZ_NUMBER_OF_TRIES') |
|
eez_mod_step = query('EEZ_MODULUS_STEP') |
|
|
|
while len(configs) < eez_num_configs: |
|
for _ in range(eez_num_tries): |
|
A = [ K(randint(-mod, mod)) for _ in range(u) ] |
|
|
|
if tuple(A) not in history: |
|
history.add(tuple(A)) |
|
else: |
|
continue |
|
|
|
try: |
|
cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K) |
|
except EvaluationFailed: |
|
continue |
|
|
|
_, H = dup_zz_factor_sqf(s, K) |
|
|
|
rr = len(H) |
|
|
|
if r is not None: |
|
if rr != r: |
|
if rr < r: |
|
configs, r = [], rr |
|
else: |
|
continue |
|
else: |
|
r = rr |
|
|
|
if r == 1: |
|
return [f] |
|
|
|
configs.append((s, cs, E, H, A)) |
|
|
|
if len(configs) == eez_num_configs: |
|
break |
|
else: |
|
mod += eez_mod_step |
|
|
|
s_norm, s_arg, i = None, 0, 0 |
|
|
|
for s, _, _, _, _ in configs: |
|
_s_norm = dup_max_norm(s, K) |
|
|
|
if s_norm is not None: |
|
if _s_norm < s_norm: |
|
s_norm = _s_norm |
|
s_arg = i |
|
else: |
|
s_norm = _s_norm |
|
|
|
i += 1 |
|
|
|
_, cs, E, H, A = configs[s_arg] |
|
orig_f = f |
|
|
|
try: |
|
f, H, LC = dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K) |
|
factors = dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K) |
|
except ExtraneousFactors: |
|
if query('EEZ_RESTART_IF_NEEDED'): |
|
return dmp_zz_wang(orig_f, u, K, mod + 1) |
|
else: |
|
raise ExtraneousFactors( |
|
"we need to restart algorithm with better parameters") |
|
|
|
result = [] |
|
|
|
for f in factors: |
|
_, f = dmp_ground_primitive(f, u, K) |
|
|
|
if K.is_negative(dmp_ground_LC(f, u, K)): |
|
f = dmp_neg(f, u, K) |
|
|
|
result.append(f) |
|
|
|
return result |
|
|
|
|
|
def dmp_zz_factor(f, u, K): |
|
r""" |
|
Factor (non square-free) polynomials in `Z[X]`. |
|
|
|
Given a multivariate polynomial `f` in `Z[x]` computes its complete |
|
factorization `f_1, \dots, f_n` into irreducibles over integers:: |
|
|
|
f = content(f) f_1**k_1 ... f_n**k_n |
|
|
|
The factorization is computed by reducing the input polynomial |
|
into a primitive square-free polynomial and factoring it using |
|
Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division |
|
is used to recover the multiplicities of factors. |
|
|
|
The result is returned as a tuple consisting of:: |
|
|
|
(content(f), [(f_1, k_1), ..., (f_n, k_n)) |
|
|
|
Consider polynomial `f = 2*(x**2 - y**2)`:: |
|
|
|
>>> from sympy.polys import ring, ZZ |
|
>>> R, x,y = ring("x,y", ZZ) |
|
|
|
>>> R.dmp_zz_factor(2*x**2 - 2*y**2) |
|
(2, [(x - y, 1), (x + y, 1)]) |
|
|
|
In result we got the following factorization:: |
|
|
|
f = 2 (x - y) (x + y) |
|
|
|
References |
|
========== |
|
|
|
.. [1] [Gathen99]_ |
|
|
|
""" |
|
if not u: |
|
return dup_zz_factor(f, K) |
|
|
|
if dmp_zero_p(f, u): |
|
return K.zero, [] |
|
|
|
cont, g = dmp_ground_primitive(f, u, K) |
|
|
|
if dmp_ground_LC(g, u, K) < 0: |
|
cont, g = -cont, dmp_neg(g, u, K) |
|
|
|
if all(d <= 0 for d in dmp_degree_list(g, u)): |
|
return cont, [] |
|
|
|
G, g = dmp_primitive(g, u, K) |
|
|
|
factors = [] |
|
|
|
if dmp_degree(g, u) > 0: |
|
g = dmp_sqf_part(g, u, K) |
|
H = dmp_zz_wang(g, u, K) |
|
factors = dmp_trial_division(f, H, u, K) |
|
|
|
for g, k in dmp_zz_factor(G, u - 1, K)[1]: |
|
factors.insert(0, ([g], k)) |
|
|
|
_dmp_check_degrees(f, u, factors) |
|
|
|
return cont, _sort_factors(factors) |
|
|
|
|
|
def dup_qq_i_factor(f, K0): |
|
"""Factor univariate polynomials into irreducibles in `QQ_I[x]`. """ |
|
|
|
K1 = K0.as_AlgebraicField() |
|
f = dup_convert(f, K0, K1) |
|
coeff, factors = dup_factor_list(f, K1) |
|
factors = [(dup_convert(fac, K1, K0), i) for fac, i in factors] |
|
coeff = K0.convert(coeff, K1) |
|
return coeff, factors |
|
|
|
|
|
def dup_zz_i_factor(f, K0): |
|
"""Factor univariate polynomials into irreducibles in `ZZ_I[x]`. """ |
|
|
|
K1 = K0.get_field() |
|
f = dup_convert(f, K0, K1) |
|
coeff, factors = dup_qq_i_factor(f, K1) |
|
|
|
new_factors = [] |
|
for fac, i in factors: |
|
|
|
fac_denom, fac_num = dup_clear_denoms(fac, K1) |
|
fac_num_ZZ_I = dup_convert(fac_num, K1, K0) |
|
content, fac_prim = dmp_ground_primitive(fac_num_ZZ_I, 0, K0) |
|
|
|
coeff = (coeff * content ** i) // fac_denom ** i |
|
new_factors.append((fac_prim, i)) |
|
|
|
factors = new_factors |
|
coeff = K0.convert(coeff, K1) |
|
return coeff, factors |
|
|
|
|
|
def dmp_qq_i_factor(f, u, K0): |
|
"""Factor multivariate polynomials into irreducibles in `QQ_I[X]`. """ |
|
|
|
K1 = K0.as_AlgebraicField() |
|
f = dmp_convert(f, u, K0, K1) |
|
coeff, factors = dmp_factor_list(f, u, K1) |
|
factors = [(dmp_convert(fac, u, K1, K0), i) for fac, i in factors] |
|
coeff = K0.convert(coeff, K1) |
|
return coeff, factors |
|
|
|
|
|
def dmp_zz_i_factor(f, u, K0): |
|
"""Factor multivariate polynomials into irreducibles in `ZZ_I[X]`. """ |
|
|
|
K1 = K0.get_field() |
|
f = dmp_convert(f, u, K0, K1) |
|
coeff, factors = dmp_qq_i_factor(f, u, K1) |
|
|
|
new_factors = [] |
|
for fac, i in factors: |
|
|
|
fac_denom, fac_num = dmp_clear_denoms(fac, u, K1) |
|
fac_num_ZZ_I = dmp_convert(fac_num, u, K1, K0) |
|
content, fac_prim = dmp_ground_primitive(fac_num_ZZ_I, u, K0) |
|
|
|
coeff = (coeff * content ** i) // fac_denom ** i |
|
new_factors.append((fac_prim, i)) |
|
|
|
factors = new_factors |
|
coeff = K0.convert(coeff, K1) |
|
return coeff, factors |
|
|
|
|
|
def dup_ext_factor(f, K): |
|
r"""Factor univariate polynomials over algebraic number fields. |
|
|
|
The domain `K` must be an algebraic number field `k(a)` (see :ref:`QQ(a)`). |
|
|
|
Examples |
|
======== |
|
|
|
First define the algebraic number field `K = \mathbb{Q}(\sqrt{2})`: |
|
|
|
>>> from sympy import QQ, sqrt |
|
>>> from sympy.polys.factortools import dup_ext_factor |
|
>>> K = QQ.algebraic_field(sqrt(2)) |
|
|
|
We can now factorise the polynomial `x^2 - 2` over `K`: |
|
|
|
>>> p = [K(1), K(0), K(-2)] # x^2 - 2 |
|
>>> p1 = [K(1), -K.unit] # x - sqrt(2) |
|
>>> p2 = [K(1), +K.unit] # x + sqrt(2) |
|
>>> dup_ext_factor(p, K) == (K.one, [(p1, 1), (p2, 1)]) |
|
True |
|
|
|
Usually this would be done at a higher level: |
|
|
|
>>> from sympy import factor |
|
>>> from sympy.abc import x |
|
>>> factor(x**2 - 2, extension=sqrt(2)) |
|
(x - sqrt(2))*(x + sqrt(2)) |
|
|
|
Explanation |
|
=========== |
|
|
|
Uses Trager's algorithm. In particular this function is algorithm |
|
``alg_factor`` from [Trager76]_. |
|
|
|
If `f` is a polynomial in `k(a)[x]` then its norm `g(x)` is a polynomial in |
|
`k[x]`. If `g(x)` is square-free and has irreducible factors `g_1(x)`, |
|
`g_2(x)`, `\cdots` then the irreducible factors of `f` in `k(a)[x]` are |
|
given by `f_i(x) = \gcd(f(x), g_i(x))` where the GCD is computed in |
|
`k(a)[x]`. |
|
|
|
The first step in Trager's algorithm is to find an integer shift `s` so |
|
that `f(x-sa)` has square-free norm. Then the norm is factorized in `k[x]` |
|
and the GCD of (shifted) `f` with each factor gives the shifted factors of |
|
`f`. At the end the shift is undone to recover the unshifted factors of `f` |
|
in `k(a)[x]`. |
|
|
|
The algorithm reduces the problem of factorization in `k(a)[x]` to |
|
factorization in `k[x]` with the main additional steps being to compute the |
|
norm (a resultant calculation in `k[x,y]`) and some polynomial GCDs in |
|
`k(a)[x]`. |
|
|
|
In practice in SymPy the base field `k` will be the rationals :ref:`QQ` and |
|
this function factorizes a polynomial with coefficients in an algebraic |
|
number field like `\mathbb{Q}(\sqrt{2})`. |
|
|
|
See Also |
|
======== |
|
|
|
dmp_ext_factor: |
|
Analogous function for multivariate polynomials over ``k(a)``. |
|
dup_sqf_norm: |
|
Subroutine ``sqfr_norm`` also from [Trager76]_. |
|
sympy.polys.polytools.factor: |
|
The high-level function that ultimately uses this function as needed. |
|
""" |
|
n, lc = dup_degree(f), dup_LC(f, K) |
|
|
|
f = dup_monic(f, K) |
|
|
|
if n <= 0: |
|
return lc, [] |
|
if n == 1: |
|
return lc, [(f, 1)] |
|
|
|
f, F = dup_sqf_part(f, K), f |
|
s, g, r = dup_sqf_norm(f, K) |
|
|
|
factors = dup_factor_list_include(r, K.dom) |
|
|
|
if len(factors) == 1: |
|
return lc, [(f, n//dup_degree(f))] |
|
|
|
H = s*K.unit |
|
|
|
for i, (factor, _) in enumerate(factors): |
|
h = dup_convert(factor, K.dom, K) |
|
h, _, g = dup_inner_gcd(h, g, K) |
|
h = dup_shift(h, H, K) |
|
factors[i] = h |
|
|
|
factors = dup_trial_division(F, factors, K) |
|
|
|
_dup_check_degrees(F, factors) |
|
|
|
return lc, factors |
|
|
|
|
|
def dmp_ext_factor(f, u, K): |
|
r"""Factor multivariate polynomials over algebraic number fields. |
|
|
|
The domain `K` must be an algebraic number field `k(a)` (see :ref:`QQ(a)`). |
|
|
|
Examples |
|
======== |
|
|
|
First define the algebraic number field `K = \mathbb{Q}(\sqrt{2})`: |
|
|
|
>>> from sympy import QQ, sqrt |
|
>>> from sympy.polys.factortools import dmp_ext_factor |
|
>>> K = QQ.algebraic_field(sqrt(2)) |
|
|
|
We can now factorise the polynomial `x^2 y^2 - 2` over `K`: |
|
|
|
>>> p = [[K(1),K(0),K(0)], [], [K(-2)]] # x**2*y**2 - 2 |
|
>>> p1 = [[K(1),K(0)], [-K.unit]] # x*y - sqrt(2) |
|
>>> p2 = [[K(1),K(0)], [+K.unit]] # x*y + sqrt(2) |
|
>>> dmp_ext_factor(p, 1, K) == (K.one, [(p1, 1), (p2, 1)]) |
|
True |
|
|
|
Usually this would be done at a higher level: |
|
|
|
>>> from sympy import factor |
|
>>> from sympy.abc import x, y |
|
>>> factor(x**2*y**2 - 2, extension=sqrt(2)) |
|
(x*y - sqrt(2))*(x*y + sqrt(2)) |
|
|
|
Explanation |
|
=========== |
|
|
|
This is Trager's algorithm for multivariate polynomials. In particular this |
|
function is algorithm ``alg_factor`` from [Trager76]_. |
|
|
|
See :func:`dup_ext_factor` for explanation. |
|
|
|
See Also |
|
======== |
|
|
|
dup_ext_factor: |
|
Analogous function for univariate polynomials over ``k(a)``. |
|
dmp_sqf_norm: |
|
Multivariate version of subroutine ``sqfr_norm`` also from [Trager76]_. |
|
sympy.polys.polytools.factor: |
|
The high-level function that ultimately uses this function as needed. |
|
""" |
|
if not u: |
|
return dup_ext_factor(f, K) |
|
|
|
lc = dmp_ground_LC(f, u, K) |
|
f = dmp_ground_monic(f, u, K) |
|
|
|
if all(d <= 0 for d in dmp_degree_list(f, u)): |
|
return lc, [] |
|
|
|
f, F = dmp_sqf_part(f, u, K), f |
|
s, g, r = dmp_sqf_norm(f, u, K) |
|
|
|
factors = dmp_factor_list_include(r, u, K.dom) |
|
|
|
if len(factors) == 1: |
|
factors = [f] |
|
else: |
|
for i, (factor, _) in enumerate(factors): |
|
h = dmp_convert(factor, u, K.dom, K) |
|
h, _, g = dmp_inner_gcd(h, g, u, K) |
|
a = [si*K.unit for si in s] |
|
h = dmp_shift(h, a, u, K) |
|
factors[i] = h |
|
|
|
result = dmp_trial_division(F, factors, u, K) |
|
|
|
_dmp_check_degrees(F, u, result) |
|
|
|
return lc, result |
|
|
|
|
|
def dup_gf_factor(f, K): |
|
"""Factor univariate polynomials over finite fields. """ |
|
f = dup_convert(f, K, K.dom) |
|
|
|
coeff, factors = gf_factor(f, K.mod, K.dom) |
|
|
|
for i, (f, k) in enumerate(factors): |
|
factors[i] = (dup_convert(f, K.dom, K), k) |
|
|
|
return K.convert(coeff, K.dom), factors |
|
|
|
|
|
def dmp_gf_factor(f, u, K): |
|
"""Factor multivariate polynomials over finite fields. """ |
|
raise NotImplementedError('multivariate polynomials over finite fields') |
|
|
|
|
|
def dup_factor_list(f, K0): |
|
"""Factor univariate polynomials into irreducibles in `K[x]`. """ |
|
j, f = dup_terms_gcd(f, K0) |
|
cont, f = dup_primitive(f, K0) |
|
|
|
if K0.is_FiniteField: |
|
coeff, factors = dup_gf_factor(f, K0) |
|
elif K0.is_Algebraic: |
|
coeff, factors = dup_ext_factor(f, K0) |
|
elif K0.is_GaussianRing: |
|
coeff, factors = dup_zz_i_factor(f, K0) |
|
elif K0.is_GaussianField: |
|
coeff, factors = dup_qq_i_factor(f, K0) |
|
else: |
|
if not K0.is_Exact: |
|
K0_inexact, K0 = K0, K0.get_exact() |
|
f = dup_convert(f, K0_inexact, K0) |
|
else: |
|
K0_inexact = None |
|
|
|
if K0.is_Field: |
|
K = K0.get_ring() |
|
|
|
denom, f = dup_clear_denoms(f, K0, K) |
|
f = dup_convert(f, K0, K) |
|
else: |
|
K = K0 |
|
|
|
if K.is_ZZ: |
|
coeff, factors = dup_zz_factor(f, K) |
|
elif K.is_Poly: |
|
f, u = dmp_inject(f, 0, K) |
|
|
|
coeff, factors = dmp_factor_list(f, u, K.dom) |
|
|
|
for i, (f, k) in enumerate(factors): |
|
factors[i] = (dmp_eject(f, u, K), k) |
|
|
|
coeff = K.convert(coeff, K.dom) |
|
else: |
|
raise DomainError('factorization not supported over %s' % K0) |
|
|
|
if K0.is_Field: |
|
for i, (f, k) in enumerate(factors): |
|
factors[i] = (dup_convert(f, K, K0), k) |
|
|
|
coeff = K0.convert(coeff, K) |
|
coeff = K0.quo(coeff, denom) |
|
|
|
if K0_inexact: |
|
for i, (f, k) in enumerate(factors): |
|
max_norm = dup_max_norm(f, K0) |
|
f = dup_quo_ground(f, max_norm, K0) |
|
f = dup_convert(f, K0, K0_inexact) |
|
factors[i] = (f, k) |
|
coeff = K0.mul(coeff, K0.pow(max_norm, k)) |
|
|
|
coeff = K0_inexact.convert(coeff, K0) |
|
K0 = K0_inexact |
|
|
|
if j: |
|
factors.insert(0, ([K0.one, K0.zero], j)) |
|
|
|
return coeff*cont, _sort_factors(factors) |
|
|
|
|
|
def dup_factor_list_include(f, K): |
|
"""Factor univariate polynomials into irreducibles in `K[x]`. """ |
|
coeff, factors = dup_factor_list(f, K) |
|
|
|
if not factors: |
|
return [(dup_strip([coeff]), 1)] |
|
else: |
|
g = dup_mul_ground(factors[0][0], coeff, K) |
|
return [(g, factors[0][1])] + factors[1:] |
|
|
|
|
|
def dmp_factor_list(f, u, K0): |
|
"""Factor multivariate polynomials into irreducibles in `K[X]`. """ |
|
if not u: |
|
return dup_factor_list(f, K0) |
|
|
|
J, f = dmp_terms_gcd(f, u, K0) |
|
cont, f = dmp_ground_primitive(f, u, K0) |
|
|
|
if K0.is_FiniteField: |
|
coeff, factors = dmp_gf_factor(f, u, K0) |
|
elif K0.is_Algebraic: |
|
coeff, factors = dmp_ext_factor(f, u, K0) |
|
elif K0.is_GaussianRing: |
|
coeff, factors = dmp_zz_i_factor(f, u, K0) |
|
elif K0.is_GaussianField: |
|
coeff, factors = dmp_qq_i_factor(f, u, K0) |
|
else: |
|
if not K0.is_Exact: |
|
K0_inexact, K0 = K0, K0.get_exact() |
|
f = dmp_convert(f, u, K0_inexact, K0) |
|
else: |
|
K0_inexact = None |
|
|
|
if K0.is_Field: |
|
K = K0.get_ring() |
|
|
|
denom, f = dmp_clear_denoms(f, u, K0, K) |
|
f = dmp_convert(f, u, K0, K) |
|
else: |
|
K = K0 |
|
|
|
if K.is_ZZ: |
|
levels, f, v = dmp_exclude(f, u, K) |
|
coeff, factors = dmp_zz_factor(f, v, K) |
|
|
|
for i, (f, k) in enumerate(factors): |
|
factors[i] = (dmp_include(f, levels, v, K), k) |
|
elif K.is_Poly: |
|
f, v = dmp_inject(f, u, K) |
|
|
|
coeff, factors = dmp_factor_list(f, v, K.dom) |
|
|
|
for i, (f, k) in enumerate(factors): |
|
factors[i] = (dmp_eject(f, v, K), k) |
|
|
|
coeff = K.convert(coeff, K.dom) |
|
else: |
|
raise DomainError('factorization not supported over %s' % K0) |
|
|
|
if K0.is_Field: |
|
for i, (f, k) in enumerate(factors): |
|
factors[i] = (dmp_convert(f, u, K, K0), k) |
|
|
|
coeff = K0.convert(coeff, K) |
|
coeff = K0.quo(coeff, denom) |
|
|
|
if K0_inexact: |
|
for i, (f, k) in enumerate(factors): |
|
max_norm = dmp_max_norm(f, u, K0) |
|
f = dmp_quo_ground(f, max_norm, u, K0) |
|
f = dmp_convert(f, u, K0, K0_inexact) |
|
factors[i] = (f, k) |
|
coeff = K0.mul(coeff, K0.pow(max_norm, k)) |
|
|
|
coeff = K0_inexact.convert(coeff, K0) |
|
K0 = K0_inexact |
|
|
|
for i, j in enumerate(reversed(J)): |
|
if not j: |
|
continue |
|
|
|
term = {(0,)*(u - i) + (1,) + (0,)*i: K0.one} |
|
factors.insert(0, (dmp_from_dict(term, u, K0), j)) |
|
|
|
return coeff*cont, _sort_factors(factors) |
|
|
|
|
|
def dmp_factor_list_include(f, u, K): |
|
"""Factor multivariate polynomials into irreducibles in `K[X]`. """ |
|
if not u: |
|
return dup_factor_list_include(f, K) |
|
|
|
coeff, factors = dmp_factor_list(f, u, K) |
|
|
|
if not factors: |
|
return [(dmp_ground(coeff, u), 1)] |
|
else: |
|
g = dmp_mul_ground(factors[0][0], coeff, u, K) |
|
return [(g, factors[0][1])] + factors[1:] |
|
|
|
|
|
def dup_irreducible_p(f, K): |
|
""" |
|
Returns ``True`` if a univariate polynomial ``f`` has no factors |
|
over its domain. |
|
""" |
|
return dmp_irreducible_p(f, 0, K) |
|
|
|
|
|
def dmp_irreducible_p(f, u, K): |
|
""" |
|
Returns ``True`` if a multivariate polynomial ``f`` has no factors |
|
over its domain. |
|
""" |
|
_, factors = dmp_factor_list(f, u, K) |
|
|
|
if not factors: |
|
return True |
|
elif len(factors) > 1: |
|
return False |
|
else: |
|
_, k = factors[0] |
|
return k == 1 |
|
|