|
"""Implementation of :class:`FractionField` class. """ |
|
|
|
|
|
from sympy.polys.domains.field import Field |
|
from sympy.polys.domains.compositedomain import CompositeDomain |
|
from sympy.polys.polyclasses import DMF |
|
from sympy.polys.polyerrors import GeneratorsNeeded |
|
from sympy.polys.polyutils import dict_from_basic, basic_from_dict, _dict_reorder |
|
from sympy.utilities import public |
|
|
|
@public |
|
class FractionField(Field, CompositeDomain): |
|
"""A class for representing rational function fields. """ |
|
|
|
dtype = DMF |
|
is_FractionField = is_Frac = True |
|
|
|
has_assoc_Ring = True |
|
has_assoc_Field = True |
|
|
|
def __init__(self, dom, *gens): |
|
if not gens: |
|
raise GeneratorsNeeded("generators not specified") |
|
|
|
lev = len(gens) - 1 |
|
self.ngens = len(gens) |
|
|
|
self.zero = self.dtype.zero(lev, dom) |
|
self.one = self.dtype.one(lev, dom) |
|
|
|
self.domain = self.dom = dom |
|
self.symbols = self.gens = gens |
|
|
|
def set_domain(self, dom): |
|
"""Make a new fraction field with given domain. """ |
|
return self.__class__(dom, *self.gens) |
|
|
|
def new(self, element): |
|
return self.dtype(element, self.dom, len(self.gens) - 1) |
|
|
|
def __str__(self): |
|
return str(self.dom) + '(' + ','.join(map(str, self.gens)) + ')' |
|
|
|
def __hash__(self): |
|
return hash((self.__class__.__name__, self.dtype, self.dom, self.gens)) |
|
|
|
def __eq__(self, other): |
|
"""Returns ``True`` if two domains are equivalent. """ |
|
return isinstance(other, FractionField) and \ |
|
self.dtype == other.dtype and self.dom == other.dom and self.gens == other.gens |
|
|
|
def to_sympy(self, a): |
|
"""Convert ``a`` to a SymPy object. """ |
|
return (basic_from_dict(a.numer().to_sympy_dict(), *self.gens) / |
|
basic_from_dict(a.denom().to_sympy_dict(), *self.gens)) |
|
|
|
def from_sympy(self, a): |
|
"""Convert SymPy's expression to ``dtype``. """ |
|
p, q = a.as_numer_denom() |
|
|
|
num, _ = dict_from_basic(p, gens=self.gens) |
|
den, _ = dict_from_basic(q, gens=self.gens) |
|
|
|
for k, v in num.items(): |
|
num[k] = self.dom.from_sympy(v) |
|
|
|
for k, v in den.items(): |
|
den[k] = self.dom.from_sympy(v) |
|
|
|
return self((num, den)).cancel() |
|
|
|
def from_ZZ(K1, a, K0): |
|
"""Convert a Python ``int`` object to ``dtype``. """ |
|
return K1(K1.dom.convert(a, K0)) |
|
|
|
def from_ZZ_python(K1, a, K0): |
|
"""Convert a Python ``int`` object to ``dtype``. """ |
|
return K1(K1.dom.convert(a, K0)) |
|
|
|
def from_QQ_python(K1, a, K0): |
|
"""Convert a Python ``Fraction`` object to ``dtype``. """ |
|
return K1(K1.dom.convert(a, K0)) |
|
|
|
def from_ZZ_gmpy(K1, a, K0): |
|
"""Convert a GMPY ``mpz`` object to ``dtype``. """ |
|
return K1(K1.dom.convert(a, K0)) |
|
|
|
def from_QQ_gmpy(K1, a, K0): |
|
"""Convert a GMPY ``mpq`` object to ``dtype``. """ |
|
return K1(K1.dom.convert(a, K0)) |
|
|
|
def from_RealField(K1, a, K0): |
|
"""Convert a mpmath ``mpf`` object to ``dtype``. """ |
|
return K1(K1.dom.convert(a, K0)) |
|
|
|
def from_GlobalPolynomialRing(K1, a, K0): |
|
"""Convert a ``DMF`` object to ``dtype``. """ |
|
if K1.gens == K0.gens: |
|
if K1.dom == K0.dom: |
|
return K1(a.to_list()) |
|
else: |
|
return K1(a.convert(K1.dom).to_list()) |
|
else: |
|
monoms, coeffs = _dict_reorder(a.to_dict(), K0.gens, K1.gens) |
|
|
|
if K1.dom != K0.dom: |
|
coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ] |
|
|
|
return K1(dict(zip(monoms, coeffs))) |
|
|
|
def from_FractionField(K1, a, K0): |
|
""" |
|
Convert a fraction field element to another fraction field. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.polys.polyclasses import DMF |
|
>>> from sympy.polys.domains import ZZ, QQ |
|
>>> from sympy.abc import x |
|
|
|
>>> f = DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(1)]), ZZ) |
|
|
|
>>> QQx = QQ.old_frac_field(x) |
|
>>> ZZx = ZZ.old_frac_field(x) |
|
|
|
>>> QQx.from_FractionField(f, ZZx) |
|
DMF([1, 2], [1, 1], QQ) |
|
|
|
""" |
|
if K1.gens == K0.gens: |
|
if K1.dom == K0.dom: |
|
return a |
|
else: |
|
return K1((a.numer().convert(K1.dom).to_list(), |
|
a.denom().convert(K1.dom).to_list())) |
|
elif set(K0.gens).issubset(K1.gens): |
|
nmonoms, ncoeffs = _dict_reorder( |
|
a.numer().to_dict(), K0.gens, K1.gens) |
|
dmonoms, dcoeffs = _dict_reorder( |
|
a.denom().to_dict(), K0.gens, K1.gens) |
|
|
|
if K1.dom != K0.dom: |
|
ncoeffs = [ K1.dom.convert(c, K0.dom) for c in ncoeffs ] |
|
dcoeffs = [ K1.dom.convert(c, K0.dom) for c in dcoeffs ] |
|
|
|
return K1((dict(zip(nmonoms, ncoeffs)), dict(zip(dmonoms, dcoeffs)))) |
|
|
|
def get_ring(self): |
|
"""Returns a ring associated with ``self``. """ |
|
from sympy.polys.domains import PolynomialRing |
|
return PolynomialRing(self.dom, *self.gens) |
|
|
|
def poly_ring(self, *gens): |
|
"""Returns a polynomial ring, i.e. `K[X]`. """ |
|
raise NotImplementedError('nested domains not allowed') |
|
|
|
def frac_field(self, *gens): |
|
"""Returns a fraction field, i.e. `K(X)`. """ |
|
raise NotImplementedError('nested domains not allowed') |
|
|
|
def is_positive(self, a): |
|
"""Returns True if ``a`` is positive. """ |
|
return self.dom.is_positive(a.numer().LC()) |
|
|
|
def is_negative(self, a): |
|
"""Returns True if ``a`` is negative. """ |
|
return self.dom.is_negative(a.numer().LC()) |
|
|
|
def is_nonpositive(self, a): |
|
"""Returns True if ``a`` is non-positive. """ |
|
return self.dom.is_nonpositive(a.numer().LC()) |
|
|
|
def is_nonnegative(self, a): |
|
"""Returns True if ``a`` is non-negative. """ |
|
return self.dom.is_nonnegative(a.numer().LC()) |
|
|
|
def numer(self, a): |
|
"""Returns numerator of ``a``. """ |
|
return a.numer() |
|
|
|
def denom(self, a): |
|
"""Returns denominator of ``a``. """ |
|
return a.denom() |
|
|
|
def factorial(self, a): |
|
"""Returns factorial of ``a``. """ |
|
return self.dtype(self.dom.factorial(a)) |
|
|