|
r""" |
|
Efficient functions for generating Appell sequences. |
|
|
|
An Appell sequence is a zero-indexed sequence of polynomials `p_i(x)` |
|
satisfying `p_{i+1}'(x)=(i+1)p_i(x)` for all `i`. This definition leads |
|
to the following iterative algorithm: |
|
|
|
.. math :: p_0(x) = c_0,\ p_i(x) = i \int_0^x p_{i-1}(t)\,dt + c_i |
|
|
|
The constant coefficients `c_i` are usually determined from the |
|
just-evaluated integral and `i`. |
|
|
|
Appell sequences satisfy the following identity from umbral calculus: |
|
|
|
.. math :: p_n(x+y) = \sum_{k=0}^n \binom{n}{k} p_k(x) y^{n-k} |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Appell_sequence |
|
.. [2] Peter Luschny, "An introduction to the Bernoulli function", |
|
https://arxiv.org/abs/2009.06743 |
|
""" |
|
from sympy.polys.densearith import dup_mul_ground, dup_sub_ground, dup_quo_ground |
|
from sympy.polys.densetools import dup_eval, dup_integrate |
|
from sympy.polys.domains import ZZ, QQ |
|
from sympy.polys.polytools import named_poly |
|
from sympy.utilities import public |
|
|
|
def dup_bernoulli(n, K): |
|
"""Low-level implementation of Bernoulli polynomials.""" |
|
if n < 1: |
|
return [K.one] |
|
p = [K.one, K(-1,2)] |
|
for i in range(2, n+1): |
|
p = dup_integrate(dup_mul_ground(p, K(i), K), 1, K) |
|
if i % 2 == 0: |
|
p = dup_sub_ground(p, dup_eval(p, K(1,2), K) * K(1<<(i-1), (1<<i)-1), K) |
|
return p |
|
|
|
@public |
|
def bernoulli_poly(n, x=None, polys=False): |
|
r"""Generates the Bernoulli polynomial `\operatorname{B}_n(x)`. |
|
|
|
`\operatorname{B}_n(x)` is the unique polynomial satisfying |
|
|
|
.. math :: \int_{x}^{x+1} \operatorname{B}_n(t) \,dt = x^n. |
|
|
|
Based on this, we have for nonnegative integer `s` and integer |
|
`a` and `b` |
|
|
|
.. math :: \sum_{k=a}^{b} k^s = \frac{\operatorname{B}_{s+1}(b+1) - |
|
\operatorname{B}_{s+1}(a)}{s+1} |
|
|
|
which is related to Jakob Bernoulli's original motivation for introducing |
|
the Bernoulli numbers, the values of these polynomials at `x = 1`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import summation |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys import bernoulli_poly |
|
>>> bernoulli_poly(5, x) |
|
x**5 - 5*x**4/2 + 5*x**3/3 - x/6 |
|
|
|
>>> def psum(p, a, b): |
|
... return (bernoulli_poly(p+1,b+1) - bernoulli_poly(p+1,a)) / (p+1) |
|
>>> psum(4, -6, 27) |
|
3144337 |
|
>>> summation(x**4, (x, -6, 27)) |
|
3144337 |
|
|
|
>>> psum(1, 1, x).factor() |
|
x*(x + 1)/2 |
|
>>> psum(2, 1, x).factor() |
|
x*(x + 1)*(2*x + 1)/6 |
|
>>> psum(3, 1, x).factor() |
|
x**2*(x + 1)**2/4 |
|
|
|
Parameters |
|
========== |
|
|
|
n : int |
|
Degree of the polynomial. |
|
x : optional |
|
polys : bool, optional |
|
If True, return a Poly, otherwise (default) return an expression. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.functions.combinatorial.numbers.bernoulli |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Bernoulli_polynomials |
|
""" |
|
return named_poly(n, dup_bernoulli, QQ, "Bernoulli polynomial", (x,), polys) |
|
|
|
def dup_bernoulli_c(n, K): |
|
"""Low-level implementation of central Bernoulli polynomials.""" |
|
p = [K.one] |
|
for i in range(1, n+1): |
|
p = dup_integrate(dup_mul_ground(p, K(i), K), 1, K) |
|
if i % 2 == 0: |
|
p = dup_sub_ground(p, dup_eval(p, K.one, K) * K((1<<(i-1))-1, (1<<i)-1), K) |
|
return p |
|
|
|
@public |
|
def bernoulli_c_poly(n, x=None, polys=False): |
|
r"""Generates the central Bernoulli polynomial `\operatorname{B}_n^c(x)`. |
|
|
|
These are scaled and shifted versions of the plain Bernoulli polynomials, |
|
done in such a way that `\operatorname{B}_n^c(x)` is an even or odd function |
|
for even or odd `n` respectively: |
|
|
|
.. math :: \operatorname{B}_n^c(x) = 2^n \operatorname{B}_n |
|
\left(\frac{x+1}{2}\right) |
|
|
|
Parameters |
|
========== |
|
|
|
n : int |
|
Degree of the polynomial. |
|
x : optional |
|
polys : bool, optional |
|
If True, return a Poly, otherwise (default) return an expression. |
|
""" |
|
return named_poly(n, dup_bernoulli_c, QQ, "central Bernoulli polynomial", (x,), polys) |
|
|
|
def dup_genocchi(n, K): |
|
"""Low-level implementation of Genocchi polynomials.""" |
|
if n < 1: |
|
return [K.zero] |
|
p = [-K.one] |
|
for i in range(2, n+1): |
|
p = dup_integrate(dup_mul_ground(p, K(i), K), 1, K) |
|
if i % 2 == 0: |
|
p = dup_sub_ground(p, dup_eval(p, K.one, K) // K(2), K) |
|
return p |
|
|
|
@public |
|
def genocchi_poly(n, x=None, polys=False): |
|
r"""Generates the Genocchi polynomial `\operatorname{G}_n(x)`. |
|
|
|
`\operatorname{G}_n(x)` is twice the difference between the plain and |
|
central Bernoulli polynomials, so has degree `n-1`: |
|
|
|
.. math :: \operatorname{G}_n(x) = 2 (\operatorname{B}_n(x) - |
|
\operatorname{B}_n^c(x)) |
|
|
|
The factor of 2 in the definition endows `\operatorname{G}_n(x)` with |
|
integer coefficients. |
|
|
|
Parameters |
|
========== |
|
|
|
n : int |
|
Degree of the polynomial plus one. |
|
x : optional |
|
polys : bool, optional |
|
If True, return a Poly, otherwise (default) return an expression. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.functions.combinatorial.numbers.genocchi |
|
""" |
|
return named_poly(n, dup_genocchi, ZZ, "Genocchi polynomial", (x,), polys) |
|
|
|
def dup_euler(n, K): |
|
"""Low-level implementation of Euler polynomials.""" |
|
return dup_quo_ground(dup_genocchi(n+1, ZZ), K(-n-1), K) |
|
|
|
@public |
|
def euler_poly(n, x=None, polys=False): |
|
r"""Generates the Euler polynomial `\operatorname{E}_n(x)`. |
|
|
|
These are scaled and reindexed versions of the Genocchi polynomials: |
|
|
|
.. math :: \operatorname{E}_n(x) = -\frac{\operatorname{G}_{n+1}(x)}{n+1} |
|
|
|
Parameters |
|
========== |
|
|
|
n : int |
|
Degree of the polynomial. |
|
x : optional |
|
polys : bool, optional |
|
If True, return a Poly, otherwise (default) return an expression. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.functions.combinatorial.numbers.euler |
|
""" |
|
return named_poly(n, dup_euler, QQ, "Euler polynomial", (x,), polys) |
|
|
|
def dup_andre(n, K): |
|
"""Low-level implementation of Andre polynomials.""" |
|
p = [K.one] |
|
for i in range(1, n+1): |
|
p = dup_integrate(dup_mul_ground(p, K(i), K), 1, K) |
|
if i % 2 == 0: |
|
p = dup_sub_ground(p, dup_eval(p, K.one, K), K) |
|
return p |
|
|
|
@public |
|
def andre_poly(n, x=None, polys=False): |
|
r"""Generates the Andre polynomial `\mathcal{A}_n(x)`. |
|
|
|
This is the Appell sequence where the constant coefficients form the sequence |
|
of Euler numbers ``euler(n)``. As such they have integer coefficients |
|
and parities matching the parity of `n`. |
|
|
|
Luschny calls these the *Swiss-knife polynomials* because their values |
|
at 0 and 1 can be simply transformed into both the Bernoulli and Euler |
|
numbers. Here they are called the Andre polynomials because |
|
`|\mathcal{A}_n(n\bmod 2)|` for `n \ge 0` generates what Luschny calls |
|
the *Andre numbers*, A000111 in the OEIS. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import bernoulli, euler, genocchi |
|
>>> from sympy.abc import x |
|
>>> from sympy.polys import andre_poly |
|
>>> andre_poly(9, x) |
|
x**9 - 36*x**7 + 630*x**5 - 5124*x**3 + 12465*x |
|
|
|
>>> [andre_poly(n, 0) for n in range(11)] |
|
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521] |
|
>>> [euler(n) for n in range(11)] |
|
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521] |
|
>>> [andre_poly(n-1, 1) * n / (4**n - 2**n) for n in range(1, 11)] |
|
[1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66] |
|
>>> [bernoulli(n) for n in range(1, 11)] |
|
[1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66] |
|
>>> [-andre_poly(n-1, -1) * n / (-2)**(n-1) for n in range(1, 11)] |
|
[-1, -1, 0, 1, 0, -3, 0, 17, 0, -155] |
|
>>> [genocchi(n) for n in range(1, 11)] |
|
[-1, -1, 0, 1, 0, -3, 0, 17, 0, -155] |
|
|
|
>>> [abs(andre_poly(n, n%2)) for n in range(11)] |
|
[1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521] |
|
|
|
Parameters |
|
========== |
|
|
|
n : int |
|
Degree of the polynomial. |
|
x : optional |
|
polys : bool, optional |
|
If True, return a Poly, otherwise (default) return an expression. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.functions.combinatorial.numbers.andre |
|
|
|
References |
|
========== |
|
|
|
.. [1] Peter Luschny, "An introduction to the Bernoulli function", |
|
https://arxiv.org/abs/2009.06743 |
|
""" |
|
return named_poly(n, dup_andre, ZZ, "Andre polynomial", (x,), polys) |
|
|