|
from sympy.core.function import diff |
|
from sympy.core.singleton import S |
|
from sympy.integrals.integrals import integrate |
|
from sympy.physics.vector import Vector, express |
|
from sympy.physics.vector.frame import _check_frame |
|
from sympy.physics.vector.vector import _check_vector |
|
|
|
|
|
__all__ = ['curl', 'divergence', 'gradient', 'is_conservative', |
|
'is_solenoidal', 'scalar_potential', |
|
'scalar_potential_difference'] |
|
|
|
|
|
def curl(vect, frame): |
|
""" |
|
Returns the curl of a vector field computed wrt the coordinate |
|
symbols of the given frame. |
|
|
|
Parameters |
|
========== |
|
|
|
vect : Vector |
|
The vector operand |
|
|
|
frame : ReferenceFrame |
|
The reference frame to calculate the curl in |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.vector import ReferenceFrame |
|
>>> from sympy.physics.vector import curl |
|
>>> R = ReferenceFrame('R') |
|
>>> v1 = R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z |
|
>>> curl(v1, R) |
|
0 |
|
>>> v2 = R[0]*R[1]*R[2]*R.x |
|
>>> curl(v2, R) |
|
R_x*R_y*R.y - R_x*R_z*R.z |
|
|
|
""" |
|
|
|
_check_vector(vect) |
|
if vect == 0: |
|
return Vector(0) |
|
vect = express(vect, frame, variables=True) |
|
|
|
vectx = vect.dot(frame.x) |
|
vecty = vect.dot(frame.y) |
|
vectz = vect.dot(frame.z) |
|
outvec = Vector(0) |
|
outvec += (diff(vectz, frame[1]) - diff(vecty, frame[2])) * frame.x |
|
outvec += (diff(vectx, frame[2]) - diff(vectz, frame[0])) * frame.y |
|
outvec += (diff(vecty, frame[0]) - diff(vectx, frame[1])) * frame.z |
|
return outvec |
|
|
|
|
|
def divergence(vect, frame): |
|
""" |
|
Returns the divergence of a vector field computed wrt the coordinate |
|
symbols of the given frame. |
|
|
|
Parameters |
|
========== |
|
|
|
vect : Vector |
|
The vector operand |
|
|
|
frame : ReferenceFrame |
|
The reference frame to calculate the divergence in |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.vector import ReferenceFrame |
|
>>> from sympy.physics.vector import divergence |
|
>>> R = ReferenceFrame('R') |
|
>>> v1 = R[0]*R[1]*R[2] * (R.x+R.y+R.z) |
|
>>> divergence(v1, R) |
|
R_x*R_y + R_x*R_z + R_y*R_z |
|
>>> v2 = 2*R[1]*R[2]*R.y |
|
>>> divergence(v2, R) |
|
2*R_z |
|
|
|
""" |
|
|
|
_check_vector(vect) |
|
if vect == 0: |
|
return S.Zero |
|
vect = express(vect, frame, variables=True) |
|
vectx = vect.dot(frame.x) |
|
vecty = vect.dot(frame.y) |
|
vectz = vect.dot(frame.z) |
|
out = S.Zero |
|
out += diff(vectx, frame[0]) |
|
out += diff(vecty, frame[1]) |
|
out += diff(vectz, frame[2]) |
|
return out |
|
|
|
|
|
def gradient(scalar, frame): |
|
""" |
|
Returns the vector gradient of a scalar field computed wrt the |
|
coordinate symbols of the given frame. |
|
|
|
Parameters |
|
========== |
|
|
|
scalar : sympifiable |
|
The scalar field to take the gradient of |
|
|
|
frame : ReferenceFrame |
|
The frame to calculate the gradient in |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.vector import ReferenceFrame |
|
>>> from sympy.physics.vector import gradient |
|
>>> R = ReferenceFrame('R') |
|
>>> s1 = R[0]*R[1]*R[2] |
|
>>> gradient(s1, R) |
|
R_y*R_z*R.x + R_x*R_z*R.y + R_x*R_y*R.z |
|
>>> s2 = 5*R[0]**2*R[2] |
|
>>> gradient(s2, R) |
|
10*R_x*R_z*R.x + 5*R_x**2*R.z |
|
|
|
""" |
|
|
|
_check_frame(frame) |
|
outvec = Vector(0) |
|
scalar = express(scalar, frame, variables=True) |
|
for i, x in enumerate(frame): |
|
outvec += diff(scalar, frame[i]) * x |
|
return outvec |
|
|
|
|
|
def is_conservative(field): |
|
""" |
|
Checks if a field is conservative. |
|
|
|
Parameters |
|
========== |
|
|
|
field : Vector |
|
The field to check for conservative property |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.vector import ReferenceFrame |
|
>>> from sympy.physics.vector import is_conservative |
|
>>> R = ReferenceFrame('R') |
|
>>> is_conservative(R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z) |
|
True |
|
>>> is_conservative(R[2] * R.y) |
|
False |
|
|
|
""" |
|
|
|
|
|
|
|
if field == Vector(0): |
|
return True |
|
frame = list(field.separate())[0] |
|
return curl(field, frame).simplify() == Vector(0) |
|
|
|
|
|
def is_solenoidal(field): |
|
""" |
|
Checks if a field is solenoidal. |
|
|
|
Parameters |
|
========== |
|
|
|
field : Vector |
|
The field to check for solenoidal property |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.vector import ReferenceFrame |
|
>>> from sympy.physics.vector import is_solenoidal |
|
>>> R = ReferenceFrame('R') |
|
>>> is_solenoidal(R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z) |
|
True |
|
>>> is_solenoidal(R[1] * R.y) |
|
False |
|
|
|
""" |
|
|
|
|
|
|
|
if field == Vector(0): |
|
return True |
|
frame = list(field.separate())[0] |
|
return divergence(field, frame).simplify() is S.Zero |
|
|
|
|
|
def scalar_potential(field, frame): |
|
""" |
|
Returns the scalar potential function of a field in a given frame |
|
(without the added integration constant). |
|
|
|
Parameters |
|
========== |
|
|
|
field : Vector |
|
The vector field whose scalar potential function is to be |
|
calculated |
|
|
|
frame : ReferenceFrame |
|
The frame to do the calculation in |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.vector import ReferenceFrame |
|
>>> from sympy.physics.vector import scalar_potential, gradient |
|
>>> R = ReferenceFrame('R') |
|
>>> scalar_potential(R.z, R) == R[2] |
|
True |
|
>>> scalar_field = 2*R[0]**2*R[1]*R[2] |
|
>>> grad_field = gradient(scalar_field, R) |
|
>>> scalar_potential(grad_field, R) |
|
2*R_x**2*R_y*R_z |
|
|
|
""" |
|
|
|
|
|
if not is_conservative(field): |
|
raise ValueError("Field is not conservative") |
|
if field == Vector(0): |
|
return S.Zero |
|
|
|
|
|
_check_frame(frame) |
|
field = express(field, frame, variables=True) |
|
|
|
dimensions = list(frame) |
|
|
|
temp_function = integrate(field.dot(dimensions[0]), frame[0]) |
|
for i, dim in enumerate(dimensions[1:]): |
|
partial_diff = diff(temp_function, frame[i + 1]) |
|
partial_diff = field.dot(dim) - partial_diff |
|
temp_function += integrate(partial_diff, frame[i + 1]) |
|
return temp_function |
|
|
|
|
|
def scalar_potential_difference(field, frame, point1, point2, origin): |
|
""" |
|
Returns the scalar potential difference between two points in a |
|
certain frame, wrt a given field. |
|
|
|
If a scalar field is provided, its values at the two points are |
|
considered. If a conservative vector field is provided, the values |
|
of its scalar potential function at the two points are used. |
|
|
|
Returns (potential at position 2) - (potential at position 1) |
|
|
|
Parameters |
|
========== |
|
|
|
field : Vector/sympyfiable |
|
The field to calculate wrt |
|
|
|
frame : ReferenceFrame |
|
The frame to do the calculations in |
|
|
|
point1 : Point |
|
The initial Point in given frame |
|
|
|
position2 : Point |
|
The second Point in the given frame |
|
|
|
origin : Point |
|
The Point to use as reference point for position vector |
|
calculation |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.vector import ReferenceFrame, Point |
|
>>> from sympy.physics.vector import scalar_potential_difference |
|
>>> R = ReferenceFrame('R') |
|
>>> O = Point('O') |
|
>>> P = O.locatenew('P', R[0]*R.x + R[1]*R.y + R[2]*R.z) |
|
>>> vectfield = 4*R[0]*R[1]*R.x + 2*R[0]**2*R.y |
|
>>> scalar_potential_difference(vectfield, R, O, P, O) |
|
2*R_x**2*R_y |
|
>>> Q = O.locatenew('O', 3*R.x + R.y + 2*R.z) |
|
>>> scalar_potential_difference(vectfield, R, P, Q, O) |
|
-2*R_x**2*R_y + 18 |
|
|
|
""" |
|
|
|
_check_frame(frame) |
|
if isinstance(field, Vector): |
|
|
|
scalar_fn = scalar_potential(field, frame) |
|
else: |
|
|
|
scalar_fn = field |
|
|
|
position1 = express(point1.pos_from(origin), frame, variables=True) |
|
position2 = express(point2.pos_from(origin), frame, variables=True) |
|
|
|
subs_dict1 = {} |
|
subs_dict2 = {} |
|
for i, x in enumerate(frame): |
|
subs_dict1[frame[i]] = x.dot(position1) |
|
subs_dict2[frame[i]] = x.dot(position2) |
|
return scalar_fn.subs(subs_dict2) - scalar_fn.subs(subs_dict1) |
|
|