|
from sympy import sympify, Add, ImmutableMatrix as Matrix |
|
from sympy.core.evalf import EvalfMixin |
|
from sympy.printing.defaults import Printable |
|
|
|
from mpmath.libmp.libmpf import prec_to_dps |
|
|
|
|
|
__all__ = ['Dyadic'] |
|
|
|
|
|
class Dyadic(Printable, EvalfMixin): |
|
"""A Dyadic object. |
|
|
|
See: |
|
https://en.wikipedia.org/wiki/Dyadic_tensor |
|
Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill |
|
|
|
A more powerful way to represent a rigid body's inertia. While it is more |
|
complex, by choosing Dyadic components to be in body fixed basis vectors, |
|
the resulting matrix is equivalent to the inertia tensor. |
|
|
|
""" |
|
|
|
is_number = False |
|
|
|
def __init__(self, inlist): |
|
""" |
|
Just like Vector's init, you should not call this unless creating a |
|
zero dyadic. |
|
|
|
zd = Dyadic(0) |
|
|
|
Stores a Dyadic as a list of lists; the inner list has the measure |
|
number and the two unit vectors; the outerlist holds each unique |
|
unit vector pair. |
|
|
|
""" |
|
|
|
self.args = [] |
|
if inlist == 0: |
|
inlist = [] |
|
while len(inlist) != 0: |
|
added = 0 |
|
for i, v in enumerate(self.args): |
|
if ((str(inlist[0][1]) == str(self.args[i][1])) and |
|
(str(inlist[0][2]) == str(self.args[i][2]))): |
|
self.args[i] = (self.args[i][0] + inlist[0][0], |
|
inlist[0][1], inlist[0][2]) |
|
inlist.remove(inlist[0]) |
|
added = 1 |
|
break |
|
if added != 1: |
|
self.args.append(inlist[0]) |
|
inlist.remove(inlist[0]) |
|
i = 0 |
|
|
|
while i < len(self.args): |
|
if ((self.args[i][0] == 0) | (self.args[i][1] == 0) | |
|
(self.args[i][2] == 0)): |
|
self.args.remove(self.args[i]) |
|
i -= 1 |
|
i += 1 |
|
|
|
@property |
|
def func(self): |
|
"""Returns the class Dyadic. """ |
|
return Dyadic |
|
|
|
def __add__(self, other): |
|
"""The add operator for Dyadic. """ |
|
other = _check_dyadic(other) |
|
return Dyadic(self.args + other.args) |
|
|
|
__radd__ = __add__ |
|
|
|
def __mul__(self, other): |
|
"""Multiplies the Dyadic by a sympifyable expression. |
|
|
|
Parameters |
|
========== |
|
|
|
other : Sympafiable |
|
The scalar to multiply this Dyadic with |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.vector import ReferenceFrame, outer |
|
>>> N = ReferenceFrame('N') |
|
>>> d = outer(N.x, N.x) |
|
>>> 5 * d |
|
5*(N.x|N.x) |
|
|
|
""" |
|
newlist = list(self.args) |
|
other = sympify(other) |
|
for i in range(len(newlist)): |
|
newlist[i] = (other * newlist[i][0], newlist[i][1], |
|
newlist[i][2]) |
|
return Dyadic(newlist) |
|
|
|
__rmul__ = __mul__ |
|
|
|
def dot(self, other): |
|
"""The inner product operator for a Dyadic and a Dyadic or Vector. |
|
|
|
Parameters |
|
========== |
|
|
|
other : Dyadic or Vector |
|
The other Dyadic or Vector to take the inner product with |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.vector import ReferenceFrame, outer |
|
>>> N = ReferenceFrame('N') |
|
>>> D1 = outer(N.x, N.y) |
|
>>> D2 = outer(N.y, N.y) |
|
>>> D1.dot(D2) |
|
(N.x|N.y) |
|
>>> D1.dot(N.y) |
|
N.x |
|
|
|
""" |
|
from sympy.physics.vector.vector import Vector, _check_vector |
|
if isinstance(other, Dyadic): |
|
other = _check_dyadic(other) |
|
ol = Dyadic(0) |
|
for v in self.args: |
|
for v2 in other.args: |
|
ol += v[0] * v2[0] * (v[2].dot(v2[1])) * (v[1].outer(v2[2])) |
|
else: |
|
other = _check_vector(other) |
|
ol = Vector(0) |
|
for v in self.args: |
|
ol += v[0] * v[1] * (v[2].dot(other)) |
|
return ol |
|
|
|
|
|
__and__ = dot |
|
|
|
def __truediv__(self, other): |
|
"""Divides the Dyadic by a sympifyable expression. """ |
|
return self.__mul__(1 / other) |
|
|
|
def __eq__(self, other): |
|
"""Tests for equality. |
|
|
|
Is currently weak; needs stronger comparison testing |
|
|
|
""" |
|
|
|
if other == 0: |
|
other = Dyadic(0) |
|
other = _check_dyadic(other) |
|
if (self.args == []) and (other.args == []): |
|
return True |
|
elif (self.args == []) or (other.args == []): |
|
return False |
|
return set(self.args) == set(other.args) |
|
|
|
def __ne__(self, other): |
|
return not self == other |
|
|
|
def __neg__(self): |
|
return self * -1 |
|
|
|
def _latex(self, printer): |
|
ar = self.args |
|
if len(ar) == 0: |
|
return str(0) |
|
ol = [] |
|
for v in ar: |
|
|
|
if v[0] == 1: |
|
ol.append(' + ' + printer._print(v[1]) + r"\otimes " + |
|
printer._print(v[2])) |
|
|
|
elif v[0] == -1: |
|
ol.append(' - ' + |
|
printer._print(v[1]) + |
|
r"\otimes " + |
|
printer._print(v[2])) |
|
|
|
|
|
elif v[0] != 0: |
|
arg_str = printer._print(v[0]) |
|
if isinstance(v[0], Add): |
|
arg_str = '(%s)' % arg_str |
|
if arg_str.startswith('-'): |
|
arg_str = arg_str[1:] |
|
str_start = ' - ' |
|
else: |
|
str_start = ' + ' |
|
ol.append(str_start + arg_str + printer._print(v[1]) + |
|
r"\otimes " + printer._print(v[2])) |
|
outstr = ''.join(ol) |
|
if outstr.startswith(' + '): |
|
outstr = outstr[3:] |
|
elif outstr.startswith(' '): |
|
outstr = outstr[1:] |
|
return outstr |
|
|
|
def _pretty(self, printer): |
|
e = self |
|
|
|
class Fake: |
|
baseline = 0 |
|
|
|
def render(self, *args, **kwargs): |
|
ar = e.args |
|
mpp = printer |
|
if len(ar) == 0: |
|
return str(0) |
|
bar = "\N{CIRCLED TIMES}" if printer._use_unicode else "|" |
|
ol = [] |
|
for v in ar: |
|
|
|
if v[0] == 1: |
|
ol.extend([" + ", |
|
mpp.doprint(v[1]), |
|
bar, |
|
mpp.doprint(v[2])]) |
|
|
|
|
|
elif v[0] == -1: |
|
ol.extend([" - ", |
|
mpp.doprint(v[1]), |
|
bar, |
|
mpp.doprint(v[2])]) |
|
|
|
|
|
|
|
elif v[0] != 0: |
|
if isinstance(v[0], Add): |
|
arg_str = mpp._print( |
|
v[0]).parens()[0] |
|
else: |
|
arg_str = mpp.doprint(v[0]) |
|
if arg_str.startswith("-"): |
|
arg_str = arg_str[1:] |
|
str_start = " - " |
|
else: |
|
str_start = " + " |
|
ol.extend([str_start, arg_str, " ", |
|
mpp.doprint(v[1]), |
|
bar, |
|
mpp.doprint(v[2])]) |
|
|
|
outstr = "".join(ol) |
|
if outstr.startswith(" + "): |
|
outstr = outstr[3:] |
|
elif outstr.startswith(" "): |
|
outstr = outstr[1:] |
|
return outstr |
|
return Fake() |
|
|
|
def __rsub__(self, other): |
|
return (-1 * self) + other |
|
|
|
def _sympystr(self, printer): |
|
"""Printing method. """ |
|
ar = self.args |
|
if len(ar) == 0: |
|
return printer._print(0) |
|
ol = [] |
|
for v in ar: |
|
|
|
if v[0] == 1: |
|
ol.append(' + (' + printer._print(v[1]) + '|' + |
|
printer._print(v[2]) + ')') |
|
|
|
elif v[0] == -1: |
|
ol.append(' - (' + printer._print(v[1]) + '|' + |
|
printer._print(v[2]) + ')') |
|
|
|
|
|
elif v[0] != 0: |
|
arg_str = printer._print(v[0]) |
|
if isinstance(v[0], Add): |
|
arg_str = "(%s)" % arg_str |
|
if arg_str[0] == '-': |
|
arg_str = arg_str[1:] |
|
str_start = ' - ' |
|
else: |
|
str_start = ' + ' |
|
ol.append(str_start + arg_str + '*(' + |
|
printer._print(v[1]) + |
|
'|' + printer._print(v[2]) + ')') |
|
outstr = ''.join(ol) |
|
if outstr.startswith(' + '): |
|
outstr = outstr[3:] |
|
elif outstr.startswith(' '): |
|
outstr = outstr[1:] |
|
return outstr |
|
|
|
def __sub__(self, other): |
|
"""The subtraction operator. """ |
|
return self.__add__(other * -1) |
|
|
|
def cross(self, other): |
|
"""Returns the dyadic resulting from the dyadic vector cross product: |
|
Dyadic x Vector. |
|
|
|
Parameters |
|
========== |
|
other : Vector |
|
Vector to cross with. |
|
|
|
Examples |
|
======== |
|
>>> from sympy.physics.vector import ReferenceFrame, outer, cross |
|
>>> N = ReferenceFrame('N') |
|
>>> d = outer(N.x, N.x) |
|
>>> cross(d, N.y) |
|
(N.x|N.z) |
|
|
|
""" |
|
from sympy.physics.vector.vector import _check_vector |
|
other = _check_vector(other) |
|
ol = Dyadic(0) |
|
for v in self.args: |
|
ol += v[0] * (v[1].outer((v[2].cross(other)))) |
|
return ol |
|
|
|
|
|
__xor__ = cross |
|
|
|
def express(self, frame1, frame2=None): |
|
"""Expresses this Dyadic in alternate frame(s) |
|
|
|
The first frame is the list side expression, the second frame is the |
|
right side; if Dyadic is in form A.x|B.y, you can express it in two |
|
different frames. If no second frame is given, the Dyadic is |
|
expressed in only one frame. |
|
|
|
Calls the global express function |
|
|
|
Parameters |
|
========== |
|
|
|
frame1 : ReferenceFrame |
|
The frame to express the left side of the Dyadic in |
|
frame2 : ReferenceFrame |
|
If provided, the frame to express the right side of the Dyadic in |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols |
|
>>> from sympy.physics.vector import init_vprinting |
|
>>> init_vprinting(pretty_print=False) |
|
>>> N = ReferenceFrame('N') |
|
>>> q = dynamicsymbols('q') |
|
>>> B = N.orientnew('B', 'Axis', [q, N.z]) |
|
>>> d = outer(N.x, N.x) |
|
>>> d.express(B, N) |
|
cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x) |
|
|
|
""" |
|
from sympy.physics.vector.functions import express |
|
return express(self, frame1, frame2) |
|
|
|
def to_matrix(self, reference_frame, second_reference_frame=None): |
|
"""Returns the matrix form of the dyadic with respect to one or two |
|
reference frames. |
|
|
|
Parameters |
|
---------- |
|
reference_frame : ReferenceFrame |
|
The reference frame that the rows and columns of the matrix |
|
correspond to. If a second reference frame is provided, this |
|
only corresponds to the rows of the matrix. |
|
second_reference_frame : ReferenceFrame, optional, default=None |
|
The reference frame that the columns of the matrix correspond |
|
to. |
|
|
|
Returns |
|
------- |
|
matrix : ImmutableMatrix, shape(3,3) |
|
The matrix that gives the 2D tensor form. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import symbols, trigsimp |
|
>>> from sympy.physics.vector import ReferenceFrame |
|
>>> from sympy.physics.mechanics import inertia |
|
>>> Ixx, Iyy, Izz, Ixy, Iyz, Ixz = symbols('Ixx, Iyy, Izz, Ixy, Iyz, Ixz') |
|
>>> N = ReferenceFrame('N') |
|
>>> inertia_dyadic = inertia(N, Ixx, Iyy, Izz, Ixy, Iyz, Ixz) |
|
>>> inertia_dyadic.to_matrix(N) |
|
Matrix([ |
|
[Ixx, Ixy, Ixz], |
|
[Ixy, Iyy, Iyz], |
|
[Ixz, Iyz, Izz]]) |
|
>>> beta = symbols('beta') |
|
>>> A = N.orientnew('A', 'Axis', (beta, N.x)) |
|
>>> trigsimp(inertia_dyadic.to_matrix(A)) |
|
Matrix([ |
|
[ Ixx, Ixy*cos(beta) + Ixz*sin(beta), -Ixy*sin(beta) + Ixz*cos(beta)], |
|
[ Ixy*cos(beta) + Ixz*sin(beta), Iyy*cos(2*beta)/2 + Iyy/2 + Iyz*sin(2*beta) - Izz*cos(2*beta)/2 + Izz/2, -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2], |
|
[-Ixy*sin(beta) + Ixz*cos(beta), -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2, -Iyy*cos(2*beta)/2 + Iyy/2 - Iyz*sin(2*beta) + Izz*cos(2*beta)/2 + Izz/2]]) |
|
|
|
""" |
|
|
|
if second_reference_frame is None: |
|
second_reference_frame = reference_frame |
|
|
|
return Matrix([i.dot(self).dot(j) for i in reference_frame for j in |
|
second_reference_frame]).reshape(3, 3) |
|
|
|
def doit(self, **hints): |
|
"""Calls .doit() on each term in the Dyadic""" |
|
return sum([Dyadic([(v[0].doit(**hints), v[1], v[2])]) |
|
for v in self.args], Dyadic(0)) |
|
|
|
def dt(self, frame): |
|
"""Take the time derivative of this Dyadic in a frame. |
|
|
|
This function calls the global time_derivative method |
|
|
|
Parameters |
|
========== |
|
|
|
frame : ReferenceFrame |
|
The frame to take the time derivative in |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols |
|
>>> from sympy.physics.vector import init_vprinting |
|
>>> init_vprinting(pretty_print=False) |
|
>>> N = ReferenceFrame('N') |
|
>>> q = dynamicsymbols('q') |
|
>>> B = N.orientnew('B', 'Axis', [q, N.z]) |
|
>>> d = outer(N.x, N.x) |
|
>>> d.dt(B) |
|
- q'*(N.y|N.x) - q'*(N.x|N.y) |
|
|
|
""" |
|
from sympy.physics.vector.functions import time_derivative |
|
return time_derivative(self, frame) |
|
|
|
def simplify(self): |
|
"""Returns a simplified Dyadic.""" |
|
out = Dyadic(0) |
|
for v in self.args: |
|
out += Dyadic([(v[0].simplify(), v[1], v[2])]) |
|
return out |
|
|
|
def subs(self, *args, **kwargs): |
|
"""Substitution on the Dyadic. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.vector import ReferenceFrame |
|
>>> from sympy import Symbol |
|
>>> N = ReferenceFrame('N') |
|
>>> s = Symbol('s') |
|
>>> a = s*(N.x|N.x) |
|
>>> a.subs({s: 2}) |
|
2*(N.x|N.x) |
|
|
|
""" |
|
|
|
return sum([Dyadic([(v[0].subs(*args, **kwargs), v[1], v[2])]) |
|
for v in self.args], Dyadic(0)) |
|
|
|
def applyfunc(self, f): |
|
"""Apply a function to each component of a Dyadic.""" |
|
if not callable(f): |
|
raise TypeError("`f` must be callable.") |
|
|
|
out = Dyadic(0) |
|
for a, b, c in self.args: |
|
out += f(a) * (b.outer(c)) |
|
return out |
|
|
|
def _eval_evalf(self, prec): |
|
if not self.args: |
|
return self |
|
new_args = [] |
|
dps = prec_to_dps(prec) |
|
for inlist in self.args: |
|
new_inlist = list(inlist) |
|
new_inlist[0] = inlist[0].evalf(n=dps) |
|
new_args.append(tuple(new_inlist)) |
|
return Dyadic(new_args) |
|
|
|
def xreplace(self, rule): |
|
""" |
|
Replace occurrences of objects within the measure numbers of the |
|
Dyadic. |
|
|
|
Parameters |
|
========== |
|
|
|
rule : dict-like |
|
Expresses a replacement rule. |
|
|
|
Returns |
|
======= |
|
|
|
Dyadic |
|
Result of the replacement. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import symbols, pi |
|
>>> from sympy.physics.vector import ReferenceFrame, outer |
|
>>> N = ReferenceFrame('N') |
|
>>> D = outer(N.x, N.x) |
|
>>> x, y, z = symbols('x y z') |
|
>>> ((1 + x*y) * D).xreplace({x: pi}) |
|
(pi*y + 1)*(N.x|N.x) |
|
>>> ((1 + x*y) * D).xreplace({x: pi, y: 2}) |
|
(1 + 2*pi)*(N.x|N.x) |
|
|
|
Replacements occur only if an entire node in the expression tree is |
|
matched: |
|
|
|
>>> ((x*y + z) * D).xreplace({x*y: pi}) |
|
(z + pi)*(N.x|N.x) |
|
>>> ((x*y*z) * D).xreplace({x*y: pi}) |
|
x*y*z*(N.x|N.x) |
|
|
|
""" |
|
|
|
new_args = [] |
|
for inlist in self.args: |
|
new_inlist = list(inlist) |
|
new_inlist[0] = new_inlist[0].xreplace(rule) |
|
new_args.append(tuple(new_inlist)) |
|
return Dyadic(new_args) |
|
|
|
|
|
def _check_dyadic(other): |
|
if not isinstance(other, Dyadic): |
|
raise TypeError('A Dyadic must be supplied') |
|
return other |
|
|