|
from sympy.physics.pring import wavefunction, energy |
|
from sympy.core.numbers import (I, pi) |
|
from sympy.functions.elementary.exponential import exp |
|
from sympy.functions.elementary.miscellaneous import sqrt |
|
from sympy.integrals.integrals import integrate |
|
from sympy.simplify.simplify import simplify |
|
from sympy.abc import m, x, r |
|
from sympy.physics.quantum.constants import hbar |
|
|
|
|
|
def test_wavefunction(): |
|
Psi = { |
|
0: (1/sqrt(2 * pi)), |
|
1: (1/sqrt(2 * pi)) * exp(I * x), |
|
2: (1/sqrt(2 * pi)) * exp(2 * I * x), |
|
3: (1/sqrt(2 * pi)) * exp(3 * I * x) |
|
} |
|
for n in Psi: |
|
assert simplify(wavefunction(n, x) - Psi[n]) == 0 |
|
|
|
|
|
def test_norm(n=1): |
|
|
|
for i in range(n + 1): |
|
assert integrate( |
|
wavefunction(i, x) * wavefunction(-i, x), (x, 0, 2 * pi)) == 1 |
|
|
|
|
|
def test_orthogonality(n=1): |
|
|
|
for i in range(n + 1): |
|
for j in range(i+1, n+1): |
|
assert integrate( |
|
wavefunction(i, x) * wavefunction(j, x), (x, 0, 2 * pi)) == 0 |
|
|
|
|
|
def test_energy(n=1): |
|
|
|
for i in range(n+1): |
|
assert simplify( |
|
energy(i, m, r) - ((i**2 * hbar**2) / (2 * m * r**2))) == 0 |
|
|