|
from sympy.core.numbers import (I, Rational, oo, pi) |
|
from sympy.core.singleton import S |
|
from sympy.core.symbol import symbols |
|
from sympy.functions.elementary.exponential import exp |
|
from sympy.functions.elementary.miscellaneous import sqrt |
|
from sympy.functions.elementary.trigonometric import (cos, sin) |
|
from sympy.integrals.integrals import integrate |
|
from sympy.simplify.simplify import simplify |
|
from sympy.physics.hydrogen import R_nl, E_nl, E_nl_dirac, Psi_nlm |
|
from sympy.testing.pytest import raises |
|
|
|
n, r, Z = symbols('n r Z') |
|
|
|
|
|
def feq(a, b, max_relative_error=1e-12, max_absolute_error=1e-12): |
|
a = float(a) |
|
b = float(b) |
|
|
|
if abs(a - b) < max_absolute_error: |
|
return True |
|
|
|
if abs(b) > abs(a): |
|
relative_error = abs((a - b)/b) |
|
else: |
|
relative_error = abs((a - b)/a) |
|
return relative_error <= max_relative_error |
|
|
|
|
|
def test_wavefunction(): |
|
a = 1/Z |
|
R = { |
|
(1, 0): 2*sqrt(1/a**3) * exp(-r/a), |
|
(2, 0): sqrt(1/(2*a**3)) * exp(-r/(2*a)) * (1 - r/(2*a)), |
|
(2, 1): S.Half * sqrt(1/(6*a**3)) * exp(-r/(2*a)) * r/a, |
|
(3, 0): Rational(2, 3) * sqrt(1/(3*a**3)) * exp(-r/(3*a)) * |
|
(1 - 2*r/(3*a) + Rational(2, 27) * (r/a)**2), |
|
(3, 1): Rational(4, 27) * sqrt(2/(3*a**3)) * exp(-r/(3*a)) * |
|
(1 - r/(6*a)) * r/a, |
|
(3, 2): Rational(2, 81) * sqrt(2/(15*a**3)) * exp(-r/(3*a)) * (r/a)**2, |
|
(4, 0): Rational(1, 4) * sqrt(1/a**3) * exp(-r/(4*a)) * |
|
(1 - 3*r/(4*a) + Rational(1, 8) * (r/a)**2 - Rational(1, 192) * (r/a)**3), |
|
(4, 1): Rational(1, 16) * sqrt(5/(3*a**3)) * exp(-r/(4*a)) * |
|
(1 - r/(4*a) + Rational(1, 80) * (r/a)**2) * (r/a), |
|
(4, 2): Rational(1, 64) * sqrt(1/(5*a**3)) * exp(-r/(4*a)) * |
|
(1 - r/(12*a)) * (r/a)**2, |
|
(4, 3): Rational(1, 768) * sqrt(1/(35*a**3)) * exp(-r/(4*a)) * (r/a)**3, |
|
} |
|
for n, l in R: |
|
assert simplify(R_nl(n, l, r, Z) - R[(n, l)]) == 0 |
|
|
|
|
|
def test_norm(): |
|
|
|
n_max = 2 |
|
for n in range(n_max + 1): |
|
for l in range(n): |
|
assert integrate(R_nl(n, l, r)**2 * r**2, (r, 0, oo)) == 1 |
|
|
|
def test_psi_nlm(): |
|
r=S('r') |
|
phi=S('phi') |
|
theta=S('theta') |
|
assert (Psi_nlm(1, 0, 0, r, phi, theta) == exp(-r) / sqrt(pi)) |
|
assert (Psi_nlm(2, 1, -1, r, phi, theta)) == S.Half * exp(-r / (2)) * r \ |
|
* (sin(theta) * exp(-I * phi) / (4 * sqrt(pi))) |
|
assert (Psi_nlm(3, 2, 1, r, phi, theta, 2) == -sqrt(2) * sin(theta) \ |
|
* exp(I * phi) * cos(theta) / (4 * sqrt(pi)) * S(2) / 81 \ |
|
* sqrt(2 * 2 ** 3) * exp(-2 * r / (3)) * (r * 2) ** 2) |
|
|
|
def test_hydrogen_energies(): |
|
assert E_nl(n, Z) == -Z**2/(2*n**2) |
|
assert E_nl(n) == -1/(2*n**2) |
|
|
|
assert E_nl(1, 47) == -S(47)**2/(2*1**2) |
|
assert E_nl(2, 47) == -S(47)**2/(2*2**2) |
|
|
|
assert E_nl(1) == -S.One/(2*1**2) |
|
assert E_nl(2) == -S.One/(2*2**2) |
|
assert E_nl(3) == -S.One/(2*3**2) |
|
assert E_nl(4) == -S.One/(2*4**2) |
|
assert E_nl(100) == -S.One/(2*100**2) |
|
|
|
raises(ValueError, lambda: E_nl(0)) |
|
|
|
|
|
def test_hydrogen_energies_relat(): |
|
|
|
assert E_nl_dirac(2, 0, Z=1, c=1) == 1/sqrt(2) - 1 |
|
assert simplify(E_nl_dirac(2, 0, Z=1, c=2) - ( (8*sqrt(3) + 16) |
|
/ sqrt(16*sqrt(3) + 32) - 4)) == 0 |
|
assert simplify(E_nl_dirac(2, 0, Z=1, c=3) - ( (54*sqrt(2) + 81) |
|
/ sqrt(108*sqrt(2) + 162) - 9)) == 0 |
|
|
|
|
|
|
|
assert simplify(E_nl_dirac(2, 0, Z=1, c=137) - ( (352275361 + 10285412 * |
|
sqrt(1173)) / sqrt(704550722 + 20570824 * sqrt(1173)) - 18769)) == 0 |
|
assert simplify(E_nl_dirac(2, 0, Z=82, c=137) - ( (352275361 + 2571353 * |
|
sqrt(12045)) / sqrt(704550722 + 5142706*sqrt(12045)) - 18769)) == 0 |
|
|
|
|
|
|
|
for n in range(1, 5): |
|
for l in range(n): |
|
assert feq(E_nl_dirac(n, l), E_nl(n), 1e-5, 1e-5) |
|
if l > 0: |
|
assert feq(E_nl_dirac(n, l, False), E_nl(n), 1e-5, 1e-5) |
|
|
|
Z = 2 |
|
for n in range(1, 5): |
|
for l in range(n): |
|
assert feq(E_nl_dirac(n, l, Z=Z), E_nl(n, Z), 1e-4, 1e-4) |
|
if l > 0: |
|
assert feq(E_nl_dirac(n, l, False, Z), E_nl(n, Z), 1e-4, 1e-4) |
|
|
|
Z = 3 |
|
for n in range(1, 5): |
|
for l in range(n): |
|
assert feq(E_nl_dirac(n, l, Z=Z), E_nl(n, Z), 1e-3, 1e-3) |
|
if l > 0: |
|
assert feq(E_nl_dirac(n, l, False, Z), E_nl(n, Z), 1e-3, 1e-3) |
|
|
|
|
|
raises(ValueError, lambda: E_nl_dirac(0, 0)) |
|
raises(ValueError, lambda: E_nl_dirac(1, -1)) |
|
raises(ValueError, lambda: E_nl_dirac(1, 0, False)) |
|
|