|
"""A cache for storing small matrices in multiple formats.""" |
|
|
|
from sympy.core.numbers import (I, Rational, pi) |
|
from sympy.core.power import Pow |
|
from sympy.functions.elementary.exponential import exp |
|
from sympy.matrices.dense import Matrix |
|
|
|
from sympy.physics.quantum.matrixutils import ( |
|
to_sympy, to_numpy, to_scipy_sparse |
|
) |
|
|
|
|
|
class MatrixCache: |
|
"""A cache for small matrices in different formats. |
|
|
|
This class takes small matrices in the standard ``sympy.Matrix`` format, |
|
and then converts these to both ``numpy.matrix`` and |
|
``scipy.sparse.csr_matrix`` matrices. These matrices are then stored for |
|
future recovery. |
|
""" |
|
|
|
def __init__(self, dtype='complex'): |
|
self._cache = {} |
|
self.dtype = dtype |
|
|
|
def cache_matrix(self, name, m): |
|
"""Cache a matrix by its name. |
|
|
|
Parameters |
|
---------- |
|
name : str |
|
A descriptive name for the matrix, like "identity2". |
|
m : list of lists |
|
The raw matrix data as a SymPy Matrix. |
|
""" |
|
try: |
|
self._sympy_matrix(name, m) |
|
except ImportError: |
|
pass |
|
try: |
|
self._numpy_matrix(name, m) |
|
except ImportError: |
|
pass |
|
try: |
|
self._scipy_sparse_matrix(name, m) |
|
except ImportError: |
|
pass |
|
|
|
def get_matrix(self, name, format): |
|
"""Get a cached matrix by name and format. |
|
|
|
Parameters |
|
---------- |
|
name : str |
|
A descriptive name for the matrix, like "identity2". |
|
format : str |
|
The format desired ('sympy', 'numpy', 'scipy.sparse') |
|
""" |
|
m = self._cache.get((name, format)) |
|
if m is not None: |
|
return m |
|
raise NotImplementedError( |
|
'Matrix with name %s and format %s is not available.' % |
|
(name, format) |
|
) |
|
|
|
def _store_matrix(self, name, format, m): |
|
self._cache[(name, format)] = m |
|
|
|
def _sympy_matrix(self, name, m): |
|
self._store_matrix(name, 'sympy', to_sympy(m)) |
|
|
|
def _numpy_matrix(self, name, m): |
|
m = to_numpy(m, dtype=self.dtype) |
|
self._store_matrix(name, 'numpy', m) |
|
|
|
def _scipy_sparse_matrix(self, name, m): |
|
|
|
|
|
m = to_scipy_sparse(m, dtype=self.dtype) |
|
self._store_matrix(name, 'scipy.sparse', m) |
|
|
|
|
|
sqrt2_inv = Pow(2, Rational(-1, 2), evaluate=False) |
|
|
|
|
|
matrix_cache = MatrixCache() |
|
matrix_cache.cache_matrix('eye2', Matrix([[1, 0], [0, 1]])) |
|
matrix_cache.cache_matrix('op11', Matrix([[0, 0], [0, 1]])) |
|
matrix_cache.cache_matrix('op00', Matrix([[1, 0], [0, 0]])) |
|
matrix_cache.cache_matrix('op10', Matrix([[0, 0], [1, 0]])) |
|
matrix_cache.cache_matrix('op01', Matrix([[0, 1], [0, 0]])) |
|
matrix_cache.cache_matrix('X', Matrix([[0, 1], [1, 0]])) |
|
matrix_cache.cache_matrix('Y', Matrix([[0, -I], [I, 0]])) |
|
matrix_cache.cache_matrix('Z', Matrix([[1, 0], [0, -1]])) |
|
matrix_cache.cache_matrix('S', Matrix([[1, 0], [0, I]])) |
|
matrix_cache.cache_matrix('T', Matrix([[1, 0], [0, exp(I*pi/4)]])) |
|
matrix_cache.cache_matrix('H', sqrt2_inv*Matrix([[1, 1], [1, -1]])) |
|
matrix_cache.cache_matrix('Hsqrt2', Matrix([[1, 1], [1, -1]])) |
|
matrix_cache.cache_matrix( |
|
'SWAP', Matrix([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])) |
|
matrix_cache.cache_matrix('ZX', sqrt2_inv*Matrix([[1, 1], [1, -1]])) |
|
matrix_cache.cache_matrix('ZY', Matrix([[I, 0], [0, -I]])) |
|
|