|
"""The commutator: [A,B] = A*B - B*A.""" |
|
|
|
from sympy.core.add import Add |
|
from sympy.core.expr import Expr |
|
from sympy.core.kind import KindDispatcher |
|
from sympy.core.mul import Mul |
|
from sympy.core.power import Pow |
|
from sympy.core.singleton import S |
|
from sympy.printing.pretty.stringpict import prettyForm |
|
|
|
from sympy.physics.quantum.dagger import Dagger |
|
from sympy.physics.quantum.kind import _OperatorKind, OperatorKind |
|
|
|
|
|
__all__ = [ |
|
'Commutator' |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
class Commutator(Expr): |
|
"""The standard commutator, in an unevaluated state. |
|
|
|
Explanation |
|
=========== |
|
|
|
Evaluating a commutator is defined [1]_ as: ``[A, B] = A*B - B*A``. This |
|
class returns the commutator in an unevaluated form. To evaluate the |
|
commutator, use the ``.doit()`` method. |
|
|
|
Canonical ordering of a commutator is ``[A, B]`` for ``A < B``. The |
|
arguments of the commutator are put into canonical order using ``__cmp__``. |
|
If ``B < A``, then ``[B, A]`` is returned as ``-[A, B]``. |
|
|
|
Parameters |
|
========== |
|
|
|
A : Expr |
|
The first argument of the commutator [A,B]. |
|
B : Expr |
|
The second argument of the commutator [A,B]. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.quantum import Commutator, Dagger, Operator |
|
>>> from sympy.abc import x, y |
|
>>> A = Operator('A') |
|
>>> B = Operator('B') |
|
>>> C = Operator('C') |
|
|
|
Create a commutator and use ``.doit()`` to evaluate it: |
|
|
|
>>> comm = Commutator(A, B) |
|
>>> comm |
|
[A,B] |
|
>>> comm.doit() |
|
A*B - B*A |
|
|
|
The commutator orders it arguments in canonical order: |
|
|
|
>>> comm = Commutator(B, A); comm |
|
-[A,B] |
|
|
|
Commutative constants are factored out: |
|
|
|
>>> Commutator(3*x*A, x*y*B) |
|
3*x**2*y*[A,B] |
|
|
|
Using ``.expand(commutator=True)``, the standard commutator expansion rules |
|
can be applied: |
|
|
|
>>> Commutator(A+B, C).expand(commutator=True) |
|
[A,C] + [B,C] |
|
>>> Commutator(A, B+C).expand(commutator=True) |
|
[A,B] + [A,C] |
|
>>> Commutator(A*B, C).expand(commutator=True) |
|
[A,C]*B + A*[B,C] |
|
>>> Commutator(A, B*C).expand(commutator=True) |
|
[A,B]*C + B*[A,C] |
|
|
|
Adjoint operations applied to the commutator are properly applied to the |
|
arguments: |
|
|
|
>>> Dagger(Commutator(A, B)) |
|
-[Dagger(A),Dagger(B)] |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Commutator |
|
""" |
|
is_commutative = False |
|
|
|
_kind_dispatcher = KindDispatcher("Commutator_kind_dispatcher", commutative=True) |
|
|
|
@property |
|
def kind(self): |
|
arg_kinds = (a.kind for a in self.args) |
|
return self._kind_dispatcher(*arg_kinds) |
|
|
|
def __new__(cls, A, B): |
|
r = cls.eval(A, B) |
|
if r is not None: |
|
return r |
|
obj = Expr.__new__(cls, A, B) |
|
return obj |
|
|
|
@classmethod |
|
def eval(cls, a, b): |
|
if not (a and b): |
|
return S.Zero |
|
if a == b: |
|
return S.Zero |
|
if a.is_commutative or b.is_commutative: |
|
return S.Zero |
|
|
|
|
|
ca, nca = a.args_cnc() |
|
cb, ncb = b.args_cnc() |
|
c_part = ca + cb |
|
if c_part: |
|
return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb))) |
|
|
|
|
|
|
|
if a.compare(b) == 1: |
|
return S.NegativeOne*cls(b, a) |
|
|
|
def _expand_pow(self, A, B, sign): |
|
exp = A.exp |
|
if not exp.is_integer or not exp.is_constant() or abs(exp) <= 1: |
|
|
|
return self |
|
base = A.base |
|
if exp.is_negative: |
|
base = A.base**-1 |
|
exp = -exp |
|
comm = Commutator(base, B).expand(commutator=True) |
|
|
|
result = base**(exp - 1) * comm |
|
for i in range(1, exp): |
|
result += base**(exp - 1 - i) * comm * base**i |
|
return sign*result.expand() |
|
|
|
def _eval_expand_commutator(self, **hints): |
|
A = self.args[0] |
|
B = self.args[1] |
|
|
|
if isinstance(A, Add): |
|
|
|
sargs = [] |
|
for term in A.args: |
|
comm = Commutator(term, B) |
|
if isinstance(comm, Commutator): |
|
comm = comm._eval_expand_commutator() |
|
sargs.append(comm) |
|
return Add(*sargs) |
|
elif isinstance(B, Add): |
|
|
|
sargs = [] |
|
for term in B.args: |
|
comm = Commutator(A, term) |
|
if isinstance(comm, Commutator): |
|
comm = comm._eval_expand_commutator() |
|
sargs.append(comm) |
|
return Add(*sargs) |
|
elif isinstance(A, Mul): |
|
|
|
a = A.args[0] |
|
b = Mul(*A.args[1:]) |
|
c = B |
|
comm1 = Commutator(b, c) |
|
comm2 = Commutator(a, c) |
|
if isinstance(comm1, Commutator): |
|
comm1 = comm1._eval_expand_commutator() |
|
if isinstance(comm2, Commutator): |
|
comm2 = comm2._eval_expand_commutator() |
|
first = Mul(a, comm1) |
|
second = Mul(comm2, b) |
|
return Add(first, second) |
|
elif isinstance(B, Mul): |
|
|
|
a = A |
|
b = B.args[0] |
|
c = Mul(*B.args[1:]) |
|
comm1 = Commutator(a, b) |
|
comm2 = Commutator(a, c) |
|
if isinstance(comm1, Commutator): |
|
comm1 = comm1._eval_expand_commutator() |
|
if isinstance(comm2, Commutator): |
|
comm2 = comm2._eval_expand_commutator() |
|
first = Mul(comm1, c) |
|
second = Mul(b, comm2) |
|
return Add(first, second) |
|
elif isinstance(A, Pow): |
|
|
|
return self._expand_pow(A, B, 1) |
|
elif isinstance(B, Pow): |
|
|
|
return self._expand_pow(B, A, -1) |
|
|
|
|
|
return self |
|
|
|
def doit(self, **hints): |
|
""" Evaluate commutator """ |
|
|
|
|
|
from sympy.physics.quantum.operator import Operator |
|
A = self.args[0] |
|
B = self.args[1] |
|
if isinstance(A, Operator) and isinstance(B, Operator): |
|
try: |
|
comm = A._eval_commutator(B, **hints) |
|
except NotImplementedError: |
|
try: |
|
comm = -1*B._eval_commutator(A, **hints) |
|
except NotImplementedError: |
|
comm = None |
|
if comm is not None: |
|
return comm.doit(**hints) |
|
return (A*B - B*A).doit(**hints) |
|
|
|
def _eval_adjoint(self): |
|
return Commutator(Dagger(self.args[1]), Dagger(self.args[0])) |
|
|
|
def _sympyrepr(self, printer, *args): |
|
return "%s(%s,%s)" % ( |
|
self.__class__.__name__, printer._print( |
|
self.args[0]), printer._print(self.args[1]) |
|
) |
|
|
|
def _sympystr(self, printer, *args): |
|
return "[%s,%s]" % ( |
|
printer._print(self.args[0]), printer._print(self.args[1])) |
|
|
|
def _pretty(self, printer, *args): |
|
pform = printer._print(self.args[0], *args) |
|
pform = prettyForm(*pform.right(prettyForm(','))) |
|
pform = prettyForm(*pform.right(printer._print(self.args[1], *args))) |
|
pform = prettyForm(*pform.parens(left='[', right=']')) |
|
return pform |
|
|
|
def _latex(self, printer, *args): |
|
return "\\left[%s,%s\\right]" % tuple([ |
|
printer._print(arg, *args) for arg in self.args]) |
|
|
|
|
|
@Commutator._kind_dispatcher.register(_OperatorKind, _OperatorKind) |
|
def find_op_kind(e1, e2): |
|
"""Find the kind of an anticommutator of two OperatorKinds.""" |
|
return OperatorKind |
|
|