|
from sympy.core import S, pi, Rational |
|
from sympy.functions import hermite, sqrt, exp, factorial, Abs |
|
from sympy.physics.quantum.constants import hbar |
|
|
|
|
|
def psi_n(n, x, m, omega): |
|
""" |
|
Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator. |
|
|
|
Parameters |
|
========== |
|
|
|
n : |
|
the "nodal" quantum number. Corresponds to the number of nodes in the |
|
wavefunction. ``n >= 0`` |
|
x : |
|
x coordinate. |
|
m : |
|
Mass of the particle. |
|
omega : |
|
Angular frequency of the oscillator. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.qho_1d import psi_n |
|
>>> from sympy.abc import m, x, omega |
|
>>> psi_n(0, x, m, omega) |
|
(m*omega)**(1/4)*exp(-m*omega*x**2/(2*hbar))/(hbar**(1/4)*pi**(1/4)) |
|
|
|
""" |
|
|
|
|
|
n, x, m, omega = map(S, [n, x, m, omega]) |
|
nu = m * omega / hbar |
|
|
|
C = (nu/pi)**Rational(1, 4) * sqrt(1/(2**n*factorial(n))) |
|
|
|
return C * exp(-nu* x**2 /2) * hermite(n, sqrt(nu)*x) |
|
|
|
|
|
def E_n(n, omega): |
|
""" |
|
Returns the Energy of the One-dimensional harmonic oscillator. |
|
|
|
Parameters |
|
========== |
|
|
|
n : |
|
The "nodal" quantum number. |
|
omega : |
|
The harmonic oscillator angular frequency. |
|
|
|
Notes |
|
===== |
|
|
|
The unit of the returned value matches the unit of hw, since the energy is |
|
calculated as: |
|
|
|
E_n = hbar * omega*(n + 1/2) |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.physics.qho_1d import E_n |
|
>>> from sympy.abc import x, omega |
|
>>> E_n(x, omega) |
|
hbar*omega*(x + 1/2) |
|
""" |
|
|
|
return hbar * omega * (n + S.Half) |
|
|
|
|
|
def coherent_state(n, alpha): |
|
""" |
|
Returns <n|alpha> for the coherent states of 1D harmonic oscillator. |
|
See https://en.wikipedia.org/wiki/Coherent_states |
|
|
|
Parameters |
|
========== |
|
|
|
n : |
|
The "nodal" quantum number. |
|
alpha : |
|
The eigen value of annihilation operator. |
|
""" |
|
|
|
return exp(- Abs(alpha)**2/2)*(alpha**n)/sqrt(factorial(n)) |
|
|